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Foreword

The papers in these proceedings were presented at the 37th Annual Symposium on
Foundations of Computer Science (FOCS ’96), sponsored by the IEEE Computer Society
Technical Committee on Mathematical Foundations of Computing. The conference was held in
Burlington, Vermont, October 14-16, 1996.

The program commuittee consisted of Anne Condon, Russell Impagliazzo, Sandy Irani,
David Karger, Dexter Kozen, Rao Kosaraju, Michael Luby, Carsten Lund, Yishay Mansour,
Rajeev Motwani, Michael Paterson, Baruch Schieber, Martin Tompa, Tandy Wamow, and
Chee Yap. We met on June 2-3, 1996, and selected 63 papers from the 174 detailed abstracts
submitted. In addition, Thomas Cover and Michael Rabin were invited to give plenary lectures,
reprinted in these proceedings.

The submissions were not refereed. and many of them represent reports of continuing
research. It is expected that most of these papers will appear in a more complete and polished
form in scientific journals in the future.

The committee selected the paper “Single-Source Unsplittable Flow,” by Jon Kleinberg,
to receive the Machtey Award, given to the best student-authored paper. There were many
excellent candidates for this award. each one deserving.

The commuttee wishes to thank all of those who submitted papers for consideration, as
well as those who helped with the process of evaluating the submissions. A list of the latter
individuals appears in these proceedings under the heading “Reviewers.” The committee aiso
wishes to thank Joe Kilian for the long hours he spent working on the electronic submission
process, Danny Sleator and Judy Watson for expert and cheerful technical assistance, and Alok
Aggarwal, Allan Borodin, and Prabhakar Raghavan for invaluable advice and assistance.

Martin Tompa
Program Committee Chair
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Polynomial Time Approximation Schemes for Euclidean TSP and other Geometric
Problems

Sanjeev Arora®
Princeton University

Abstract

We present a polynomial time approximation scheme for
Euclidean TSP in ®2. Given any n nodes in the plane
ana ¢ > 0, the scheme finds a (1 + €)-approximation
to the optimum traveling salesman tour in time n0(/6),
When the nodes are in R¢, the running time increases to
nO(oe*=*n)/¢*™! " The previous best approximation algo-
rithm for the problem (due 10 Christofides) achieves a 3/2-
approximation in poiynomial time.

We also give similar approximarion schemes for a host
of other Euclidean problems, including Steiner Tree, k-TSP,
Minimumdegree-k spanning tree, k-MST, etc. (This list may
ger longer; our techniques are fairly general.) The previ-
ous best approximation aigorithms for ail these problems
achieved a constant-factor approximation.

All our algorithms also work, with aimos! no modifica-
tion. when distance is measured using any geometric norm
(such as £, for p > 1 or other Minkowski norms).

1 Introduction

Inthe Traveling Salesman Problem (“TSP"), we are given
n nodes and for each pair {1, j} of distinct nodes a distance
d: .. We desire a closed path that visits each node ex-
actly once (i.e., is a salesman tour) and incurs the least cost
(which is the sum of the distances along the path). This
classic problem has proved a rich testing ground for most
important algorithmic ideas during the past few decades,
and influenced the emergence of fields such as operations
research, polyhedral theory and complexity theory. For a
fascinating history, see Lawler et al. [29].

Since the 1970s, mounting evidence from complexity the-
ory suggests that the problem is computationally difficult.
Exact optimization is NP-hard (Karp [23]). So is approxi-
mating the optimum within any constant factor (Sahni and
Gonzalez [40]). There are also other reasons to believe in

* Supported by NSF CAREER award NSF CCR-9502747 and an Alfred
Sloan Fellowship. Email: arora@cs.princeton.edu

the TSP’s nastiness (cf. DF completeness [37] and PLS-
completeness [20]).

But TSP instances arising in practice are usually quite
special, so the hardness resuits may not necessarily apply to
them. In merric TSP the nodes lie in a metric space (i.e.. the
distances satisfy the triangle inequality). In Euclidean TSP
the nodes lie in R (or more generally, in R¢ for some d) and
distance is defined using the £> norm. Note that Euclidean
TSP is a subcase of metric TSP.

Unfortunately. even Euclidean TSP is NP-hard (Papadim-
itriou [35], Garey, Graham, and Johnson [12]). Therefcre
algorithm designers were left with no choice but to con-
sider more modest notions of a “good" solution. Karp {24},
in a seminal work on probabilistic analvsis or algorithr:s.
showed that when the n nodes are picked uniformly and
independently from unit square, then the fixed dissecrion
heuristic with high probability finds tours whose cost is
within 1 + ¢ of optimal (where ¢ > 0 is arbitrarily smail).
Christofides [9] designed an approximation algorithm that
on every instance of metric TSP computes a tour of cost =t
most 1.5 times the optimum.

Two decades of research failed to improve upon
Christofides’ algorithm for metric TSP. But some re-
searchers continued to hope that even a PTAS might ex-
ist. A PTAS or Polynomial-Time Approximation Scheme
is a polynomial-time algorithm — or a family of such
algorithms— that, for each fixed ¢ > 0, can approximate
the problem within a factor 1 + €. (The running time couid
depend upon ¢, but for each fixed ¢ has to be poiynomiai in
the input size.) PTAS’s are known for very few problems;
two important ones are in [17, 22]. Recently Arora, Lund.
Motwani, Sudan, and Szegedy [3] showed that if P = NP,
then metric TSP and many other problems do not have a
PTAS. Their work relied upon the theory of MAX-SNP-
completeness (Papadimitriou and Yannakakis [38]), the no-
tion of probabilistically checkabie proofs or PCPs (Feige,
Goldwasser, Lovész, Safra and Szegedy [11], Arora and
Safra [4]), and the connection between PCPs and hardness
of approximation [11].

The status of Euclidean TSP remained open, however. In
this paper, we show that Euclidean TSP has a PTAS. Fer



every € > 0, the PTAS computes a (1 + ¢)-approximation
to the optimal tour in n°(//€) time. When the nodes are in
R4, the running time rises to nO(los* ™" nloglogn)/<*~'  Qur
techniques apply to many other geometric problems, which
are described in Section 1.1.

We design the PTAS by showing that every TSP instance
in 2 (also in R for every fixed d) has a (1+ ¢)-approximate
tour with the following very simple structure: there is a way
to recursively partition the plane so that “very few" edges of
the tour cross each line of the partition (see Theorem 4). A
tour with such simple structure can be found using dynamic
programming. We remark that the idea of partitioninga TSP
instance into smaller instances has been used before, most
famously in [24]. Dynamic programming has also been used
before, most recently in an approximation scheme for planar
graph TSP [28].

Our Structure Theorem about near-optimal tours also
seems to shed some light — at least at an intuitive level—
on one mysterious aspect of the TSP: the remarkable perfor-
mance of simple heuristics. The most well-known of them,
such as K-OPT or Lin-Kernighan [31], date to the 1960s
and 70s. Using simple local-exchange rules, they quickly
come up with very good salesman tours on “real-iife” TSP
instances (19, 5]. But many of these “real-life" instances are
either Euclidean or derived from Euclidean instances! (See
for example the TSPLIB library [39].) Since our structure
theorem shows that such instances have near-optimai sales-
man tours with a very simple structure, the fact that simple
heuristics can find such tours should be no mystery.

We cannot show, however, that any known heuristic is a
PTAS!. But maybe our techniques will motivate further re-
search on this topic. For example, even our current dynamic
programming algorithm can be viewed (after some twists in
the definition of “local search") as a local search algorithm
that performs upto O(logn/¢) edge exchanges per step (see
Section 2.4).

Finally, theinevitable question: Is our PTAS practical? A
straightforward implementation (for even moderate values
of €) is very slow, but we see no reason why a speedier,
more subtle, implementation may not exist (see Section 4.1
in the appendix). At the very least, the Theorem gives a
way of decomposing TSP instances into a large number of
“independent” and smaller instances, and this may prove
helpful in parallelizing existing TSP routines.

!In fact, thus far there is no evidence that any of the known heuristics is
a PTAS for Euclidean TSP. The few published resuits in fact suggest quite
the upposite. With an adversariaily-chosen starting tour, K -OPT (for any
constant K') may produce a tour whose cost is Q(logn/ log logn) times
the cost of the optimum tour, even when the n nodes lie in ®2 [8]. In case
of metric TSP. finding a locaily-opumum tour for KX-OPT (for K > 8)
is PLS-complete [26]. (This strongly suggests that no polynomial-time
algorithm can find such a local optimum; see [20].) Many vanants of
Lin-Kemighan are also PLS-compliete (36].

1.1 Steiner Tree and other geometric problems.

Many network problems identified in the past few
decades are very similar to the TSP. Below, we define some
of them. We will restrict attention to the Euclidean (or geo-
metric) versions of these problems. The best approximation
algorithms for all of them achieve a constant factor approx-
imation in polynomial time (see the survey by Bern and
Eppstein [6]). We are able to design PTAS’s for the planar
versions, and n@Uog*~*nloglogn)/¢*~" time approximation
schemes for the ¢ versions.

Minimum Steiner Tree: Given n nodes in ®¢, find the
minimum cost tree connecting them®. In general,
the minimum spanning tree is not an optimal solution
(as observed many decades ago). In R? the cost of the
MST can be as far as a factor 2/+/3 from the optimum.
(Furthermore, the famous Gilbert-Pollak [13] conjec-
ture said it can’t be any further from the optimum;
the conjecture was proved by Du and Hwang [10]).
A spate of research activity in recent years (starting
with the work of Zelikovsky([42]) has provided better
algorithms: with an approximation ratio approaching
1.10. The metric case is MAX-SNP-hard.

Degree-restricted-MST. Given n nodes in ¢ and an in-
teger k£ > 2, find the minimum cost spanning tree in
which every node has degree at most k. When & = 2,
the problem is polynomial-time equivalent to the TSP
and hence NP-hard. The case £ = 3 is NP-hard;
k = 4 is open, and when k£ > 5 the problem can be
solved optimaily in polynomial time. For the cases
k = 3,4 in R?, a constant-factor approximation algo-
rithm is given by Khuller, Raghavachari, and Young
[27].

k-TSP: Given n nodes in R¢ and an integer £ > 1, find
the smallest tour that visits at least & nodes. An ap-
proximation algorithm due to Mata and Mitcheil [32]
achieves a constant factor approximation in R?.

k-MST: Given n nodes in ¢ and an integer £ > 2, find
k nodes with the shortest MST. Blum, Chalasani, and
Vempala (7] gave the first O( 1)-factor approximation
algorithm for points in R2; there has been much other
work before and since.

We remark that until recently the approximation algo-
rithms for the last three problems heavily used the geometry
of the plane and broke down even in R>. But recent algo-
rithms — discovered independently of our paper — work
for any metric space.

21t appears that this problem was first posed by Gauss in a letter to
Schumacher (15].



2 The TSP Algorithm

As mentioned in the introduction, we design our PTAS
for Euclidean TSP in ®? by showing that there is a way to
recursively partition the plane so that there exists a (1 + €)-
approximate tour that crosses each line of this partition “very
few" times. We state this formally in Theorem 4 and then
describe the PTAS. Theorem 4 is proved in Section 2.1, and
the algorithm for R is described in Section 2.2.

In this paper, whenever we say “rectangle”, we mean an
axis-aligned rectangle. The size of the rectangle is the length
of its longer edge. The bounding box of a set of nodes is the
smallest rectangle enclosing them.

To simplify the exposition, we first modify the TSP in-
stances alittle so that internode distances are not too different
from one another.

Proposition 1 Ler n,¢ > 0 be such thatn > 10/e. Then
the problem of computing a (1 + ¢)-approximation to the
optimum tour length in an n-node instance can be reduced
in poly(n) time to the problem of computing a (1 + 9¢/10)-
approximation in an instance in which the the smallest in-
ternode distance is 1 unit and the size of the bounding box
is ar most 1.5n°,

Proof:The reduction involves perturbing the n-node in-
stance a little. Let T be the cost of the minimum spanning
tree. Note that the optimum salesman tour has cost at least
T and at most 1.57 [9]. So the size of the bounding box
is at most 0.757. Construct a new instance by placing a
grid of granuiarity 7'/2n” in the plane and moving each
node to its nearest gridpoint (this may cause some nodes to
merge). Because each node moved by at most 7/2n? and a
salesman tour has n edges, the tour cost changed by at most
2n - T/2n% = T/n. Now since ¢/10 > 1/n, it suffices to
compute a (1 + 9¢/10)-approximation in the new instance.

Finally, divide all distances in the new instance by T/2n?,
so that the smallest internode distance is at least 1 and the
bounding box has size at most 0.757/(T/2n*) < 1.5n%

O

Now we define arecursive partition of a rectangle. A line
separator of a rectangle is a straight line segment parallel
to its shorter edge that partitions it into two rectangles of at
least 1/3rd the area. For example, if the rectangle’s width
W is greater than its height, then a line separator is any
vertical line in the middle W/3 of the rectangle.

Definition 1 (1/3:2/3 tiling) A 1/3 : 2/3-tiling of a recran-
gle R is a binary tree (i.e., a hierarchy) of sub-rectangles of
R. The rectangle R is at the root. If the size of Ris < 1,
then the hierarchy contains nothing else. Otherwise the root
contains a line separator for R, and has two subtrees that
are 1/3 : 2/3-tilings of the two rectangles into which the
line separator divides R.
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Figure 1. A 1/3: 2/3 tiling

The depth of the tiling is the maximum depth of this tree.

Note that rectangles at depth d in the tiling form a partition
of the root rectangle. The set of all rectangles at depth d <1
is a refinement of this partition obtained by putting a line
separator through each depth d rectangie of size > 1. The
area of any depth d rectangle is at most (2/3)¢ times the total
area. The following proposition is therefore immediate.

Proposition 2 If a rectangle has width W and height H,
then its every 1/3 : 2/3 tiling has deptk at most log, < W +
log; s H +2.

We need one more definition about tilings.

Definition 2 (portals) A portal ina 1/3 : 2/3-tiling is any
point that lies on the edge of some rectangle in the tiling. If
m is any positive integer then a set of portals P is called
m-regular for the tiling if there are exactly m equidistant
portals on the line separator of each rectangle of the tiling.
(We assume that the the end-points of the line separator are
also portals. In other words the line separator is partitioned
into exactly m — 1 equal parts by the portals on it.)

Now we indicate how the above ideas are used. We
first note that an optimum salesman tour is always a simple
polygon. To simplify the exposition, we will allow tours
with “bent” edges. These bent edges arise as follows. We
introduce additional (“Steiner") nodes in the plane (these
will be portals insome 1/3 : 2/3 tiling) and ask that the tour
visit these nodes in addition to the input nodes. We call such
atoura salesman path. Of course, at the end of the algorithm
we can change a salesman path into a polygonal tour by
straightening the bent edges (i.e., removing the additional
points).

To avoid disturbing the tour too much, we wish to limit the
number of additional nodes. This motivates the following
definition.

Definition 3 (m-light) Ler m € Z% and 7 be a salesman
path on some set of nodes. Let S bea 1/3 : 2/3 tiling of the
bounding box and P be an m-regular set of portals on this
tiling. Then m is m-light with respect to S if the following



