V. RAJARAMAN B T. RADHAKRISHNAN |

An Introduction
to Digital
Computer Design

SECOND EDITION

AN INTRODUCTION
TO

DIGITAL COMPUTER DESIGN

SECOND EDlTION

V. RAJARAMAN, Ph.D.

Professor of Electrical Engineering and
Computer Sciences
Indian Institute of Technology

Kanpur

and

T. RADHAKRISHNAN, Ph.D.

Assistant Professor of Computer Sciences,

Concordia University
Montreal, Canada

Prentice-Hall of India Private Limited
New Delhi-110001
' 1982

Rs. 25.00

AN INTRODUCTION TO DIGITAL COMPUTER DESIGN,

2nd Ed.
by V.Rajaraman and T. Radhakrishnan

PRENTICE-HALL INTERNATIONAL, INC., Englewood Cliffs.
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi.
PRENTICE-HALL INTERNATIONAL, INC., London.
PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney.
PRENTICE-HALL OF CANADA LTD,, Toronto.

PRENTICE-HALL OF JAPAN, INC., Tokyo.

PRENTICE-HALL OF SOUTHEAST ASIA (PTE.) LTD., Singapore.
WHITEHALL BOOKS LIMITED, Wellington. New Zealand.

© 1978 by Prentice-Hall of India Private Limited, New Delhi. All
rights reserved. No part of this book may be reproduced in any form,
by mimeograph or any other means, without permission in writing from
the publishers.

ISBN-0-87692-021-0

The export rights of this book are vested solely with the publisher.

First Printing (First Edition) April, 1976
Second Printing (Second Edition) August, 1978

Third Printing [- T | March, 1982

Printed by 6. D. Makhija at India Offset Press, New Delhi-110064 and
Published by Prentice-Hall of India Private Limited, M-97, Connaught
Circus New Delhi-110001, :

PREFACE

This book is an elementary introduction to digital
computer design. It does not assume an extensive know-
ledge of electronics or mathematics. A student in the
final year B.Sc. or B. Tech. would be able to follow
the book. A knowledge of programming in FORTRAN would,
however, be useful to understand some of the simulation
programs given in the book and would also give the pro-
per perspective to appreciate the development of the
subject.

After a brief introduction, Chapter II deals with
the representation of numbers suitable for manipulation
on digital computers, Binary numbers, conversion bet-
ween number bases, and arithmetic operations are dis-
cussed in this chapter. Algorithms (written in English)
corresponding to the different procedures are presented
wherever suitable. Boolean Algebra is introduced in
Chapter III. Karnaugh map and McCluskey chart method for
simplifying Boolean expressions are discussed in this
chapter. We have found that most students are able to
use mechanically the algorithms for simplifying Boolean
expressions but they have difficulty in formulating
truth tables from word statements. We have thus devoted
most of Chapter IV to illustrate this procedure through
examples. Synthesis of combinational circuits with
NAND/NOR gates is also discussed in this chapter. Chap-
ter V is on flip-flops, registers and counters. We have
discussed tiiese keeping in view the advent of integrated
circuits. We have thus avoided detailed presentation of
sequential circuit synthesis., . We have, however, given
synthesis procedures for synchronous counters and the
design of counter decoders to generate timing signals.
With the advent of medium and large scale integrated
circuits, the use of microprogramming languages to des-
cribe digital systems has become important. We have
thus devoted Chapter VI to define a simple microprogra-
mming language. This language is used in the chapter
to design some small digital subsystems. It is used
again in Chapter X to design a small computer. A course
in digital techniques given to undergraduates in Elec-
tronics may use only these six chapters as they are
self-contained.

vi Preface

From Chapter VII the discussion shifts to the de-
sign of general purpose digital computers. In Chapter
VII it is shown that computation begins with an algo-
rithm which is expressed in a suitable language. This
language is translated by a computer program to a set
of its own instructions which are executed by the com-
puter's electronic circuits. This discussion lays the
ground work for the later discussion of "software-
hardware trade offs" in. computer design. Chapter VIII
deals with the design of computer memories using magne-
tic cores and semiconductors. Recent developments in
memories, namely, Read Only Memories (ROM) and content
addressable memories are also discussed in this Chapter.
In Chapter IX the organization of a small computer is
presented., A simulator program in FORTRAN is given for
this computer to enable students to write machine lan-
guage programs for this hypothetical machine and test
them. The need for having extra instructions in the
machine to conveniently solve new problems is brought
out., These new instructions are introduced in the ma-
chine and by the end of the chapter the machine becomes
fairly sophisticated. This evolutionary development of
the computer enables the students to appreciate "hard-
ware-software trade off" in computer design. Chapter X
presents the design of a small binary computer., The
idea of microprogrammed control unit is also given in
tnis chapter. Chapter XI discusses various types of
data structures such as strings, lists, arrays, queues
etc., which are stored and processed in general purpose
digital computers. Chapter XII introduced peripheral
devices used by computers. This is followed by a dis=-
cussion of Input/Output architecture in general purpose
computers. The last chapter is devoted to a discussion
of microprocessors and microcomputers. Both hardware
and software aspects of microcomputers is discussed in
this chapter.

In 1971 the authors started writing notes from which
this book evolved. The cyclostyled version of the book
has been thoroughly class room tested and has undergone
four revisions. It has been used for the first course in
digital computer design taught to post graduate students
in computer science at Indian Institute of Technology,
Kanpur, who come with no previous background in computing.
It has also been used in an optional course on digital
computer design given to final year undergraduate
students in Electrical Engineering. The notes have been
used several times for short intensive courses on compu-
ter logic design taught to practicing engineers.

Preface vii

: The first edition of this book was published in 1976,
The edition was warmly received by students and was sold
out in the first year. The authors felt the need to ex-
tensively revise the book to fill gaps in the previous edi-
tion and include some recent developments. Accordingly in
this edition all chapters were thoroughly reviewed. Chap-
ter VI on micropyrogramming language and Chapter X on logic
design of a small computer have been rewritten., Chapter
XII of the first edition has been replaced by a chapter on
Input/Output devices and architecture. A new chapter, Chap-
ter XIII, has been written on microprocessors and micro-
computers,

We would like to thank all our students and colleagues
for the many constructive comments given by them over the
years. Our thanks are due to our students, Mr. V. Srini-
vasan and Mr. Ramesh Chandra, for proof reading the last
two versions of the book and to Mr. V.M. Malhotra who tha-
roughly reviewed Chapters VI and X. We would like to thank
Mr. H.K. Nathani for his excellent typing and Mr. A.K. Bhar-

~gava for advice on line drawings.

We would like to thank Dr. A. Bhattacharyya, Director,
Indian Institute of Technology, Kanpur for providing the.
facilities to write this book. Thanks are due to the Edu-
cational Development Centre at IIT Kanpur which provided
funds to prepare the manuscript of the first edition of
this book °

Finally, the first author would like to thank his wife,
Dharma, for drawing all the figures in the book, for proof
reading and indexing the book and her dedication support
in all his endeavours,

IIT-Kanpur - V. Rajaraman
May 1978 - T. Radhaknishnan

I,

Il

III.,

Iv.,

CONTENTS

INTRODUCTION

BINARY NUMBERS, CODES AND ARITHMETIC

Numbering Systems 4)
Decimal to Binary Conversion 7
Binary Addition 11

Binary Subtraction 13
Complement Representation of
Numbers 15
Addition/Subtraction of Numbers
in One's Complement Notation 17
Addition/Subtraction of -Numbers
in Two's Complement Notation 19
Binary Multiplication 20

Binary Division 24

Binary Coded Decimal Numbers 27
Arithmetic with Binary Coded
Decimal Numbers 36

Floating Point Arithmetic 40

AN ALGEBRA FOR DIGITAL SYSTEMS

Wwwww
s o o o o
bW+

wWwwww
O ~Jo

3.10

An Example 51

Postulates of Boolean Algebra 52
Basic Theorems of Boolean Algebra
Boolean Functions and Truth Tables
Canonical Forms for Boolean
vunctions 63

Logic Gates 67

Simplifying Boolean Functions 73
Veitch-Karnaugh Map Method 76
Quine-McCluskey Procedure 85
Conclusions 93

COMBINATIONAL SWITCHING CIRCUITS

4.1

[> oo
L L)
> wN

®
(8]

Combinational Circuit Design
Procedure 96

Binary Operators and Logic Gates
Integrated Circuits and NAND-NOR
Gates 110

Realization of Boolean Expressions
with NAND Gates- 114

Some Common Combinational Circuits
Used in Digital Systems 122

ix

55
61

108

51

95

VI

VII.

VIII.

IX.

w oot n
e o 5 0 o © o o o

L]
[

FLIP-FLOPS, REGISTERS AND COUNTERS

LoNdoawnme W -

0
5.11

A Basic Secuential Circuit 137
140

Types of Sequential Circuits

~Flip-rlops 142

Counters 153

Counter Decoders 160
Controlled Counters 163

Shift Registers 166

Push Down Stack 169

Transfer of Information between

- Registers 170

Some Applications of Shift
Registers 173
Single Shot and Schmitt Trigger

LOGIC DESIGN EXAMPLES

6.1

o O O
e o o
oW N

A Language for describing
Digital Systems 183

Binary Addition 188

Binary Multiplier Design 19}
Design of Two Digit Decimal

~ Adder 194

ALGORITHMS, MACHINES AND LANGUAGES

o o (o] co o
°
o w N = @

Some Sample Algorithms 200
Computing Machines 203

Computer Oriented Languages 209

A Combined View 212

ITAL MEMORY SYSTEMS

Memory Parameters 216
Characteristics of Magnetic
Cores 219

2D (Linear Select) Memory
Using Cores 222

3? (Coincident Current) Memory
22D Memory Organization 230
A Semiconductor Random Access
Memory 233

Read Only Memories 236

Content Addressed Memories 239

BASIC MACHINE ORGANIZATION

9.1
9.2

Storage Organization of SMAC
Instruction and Data
Representation 249

Contents
137
177
182
200
215
227
247

247

Contents xi
9.3 CPU Organization 252
9.4 _Input/Output for SMAC 254
9.5 Basic Instruction Set 254
9.6 Simulation of SMAC 259
9.7 Instructions to Simplify Vector
Operations 261
9.8 Half wWord Instructions 267
9.9 Subroutines 268 .
9.10 The Use of Base Registers 274
9.11 Instruction Formats 276
9.12 1Input/Cutput Organization 278
X. LOGIC DESIGN OF A SMALL COMPUTER 281
10.1 Description of SMAC-B 281
10.2 Program Storage and Execution
in SMAC-B 224
10.3 Program Enter iMode 288
10.4 The Fetch Cycle 289
10.5 The Execution Cycle 290
1G.6 Micyroprogrammed Control Unit 294
X1, DATA STRUCTURES IN COMPUTER DESIGN 302
11.1 Hardware and Software
Realization 302
11.2 Double Precision and Complex
Arithmetic 305
11.3 Linear and Multi-Dimensional
Arrays 306
11.4 Push Down Stacks 309
11.5 Use of Stacks in Compiling .
Arithmetic Statements 311
11.6 Complex Data Structures 315
XII, INPUT=-OUTPUT DEVICES AND ARCHITECTURE 326
12.1 Input/Output Devices 327
12,2 Back=up Memory Devices 329
12.3 Interfacing Input/Output Units 336
12.4 Interrupt Structures 344
12.5 I/0 Channels 352
12.6 Bus Organizations 354
12,7 Some Software Considerations 356
12.8 Operating System Concepts 357

xii
XIII. MICROPROCESSORS AND MICROCOMPUTERS

13.1 Micros, Minis, and Maxis 362
13.2 Architecture of Microprocessors
13.3 Programming with Microcomputers
13.4 Microprocessor Development

Systems 381
13,5 In Circuit Emulation 383
13.6 Typical Applications 384

APPENDIX I ALPHANUMERIC CHARACTER CODES
APPENDIX IT A LIST OF MICROPROCESSORS

INDEX

Contents
362
366
373
393
394

396

CHAPTER 1

INTRODUCTION

We may define a digital .computer as a machine which
accepts a stream of symbols, manipulates them according
to precise rules, and produces a stream of symbols at
its output. At the simplest level a digital processor
may accept a single symbol at its input, perform an ope-
ration on it, and produce another symbol at its output.
For example, a processor to find the square root of a
one digit number would fall in this category. At a more
complex level a large number of symbols may be processed
using extensive rules. A digital system to automatically
print a book would fall in the second category. Such a
system should accept a string of symbols, namely, the
typewritten material. Given the number of letters which
could be accomodated on a line and the rules for breaking
a word it should determine the space to be left between
words on a line so that all lines are aligned on both the
left and right hand sides of a page. The processor should
also arrange lines into paragraphs and pages. Decisions
to leave space for figures should be made. A multitude
of such decisions are to be taken before a well laid out
book is obtained. Such complex processing would require
extensive special facilities such as a large amount of
storage, electronic circuits to count and manipulate
characters, and a printer which has a complete assortment
of various sizes and styles of letters. Regardless of
the complexity of processing, there are some basic fea-
tures which are common to all digital proce581ng of in-
formation which enables us to treat the subject in a uni-
fied manner. These are:

(1) All strings of input symbols to a digital
system are transformed to an equivalent
string which has only two distinct symbols.
These symbols are 0 and 1 and the trans-
formed string is known as a string of
binary digits or bits.

(2) Rules for manipulating the symbols are to
be precisely specified as a sequence of
instructions. The instructions are also
coded and stored as a string of binary
digits.

(3) Manipulation or processing of binary sym-
bols is realized by electronic circuits.

2 Digital Computer Design

One may design a variety of processing
elements (i,e. electronic circuits)
which accept binary symbols as inputs
and transform them to a preassigned
binary output symbol or symbols. In
theory any manipulation or storage of
binary symbols could be performed by

a single type of "universal processing
element". In other words a processor
may require a large number of proce=-
ssing elements of the same kind. In
actual digital processing systems, due
to economic reasons, one may not use
only "universal elements" but one would
definitely minimise the variety of pro-
cessing elements. The fact that it is
possible to design complex digital sys-
tems with a small variety of processing
elements is-an important concept, which
should be emphasised.

The logic design of digital computers and systems
‘consists of implementing the three basic steps enumera-
ted above keeping in view the engineering constraints
such as the availability of processing elements, their
cost, reliability, maintainability and ease of fabri-
cation.

At this stage, we should distinguish between the
design of a general purpose digital computer and that
of a specialised digital subsystem. Even though the
three basic steps in design are common to both, the
constraints which are peculiar to each of these leads
to a difference in the philosophy of design. -

The general purpose machine is designed to perform
a variety of tasks. Each task would require the execu-
tion of a different sequence of processing rules. The
processing rules to be followed may vary widely. At the
outset one would not be able to predict all the tasks one
may like to do with a machine. A flexible design is thus
required. This flexibility is achieved by carefully
selecting a small set of elementary processing rules or
operations and designing electronic circuits to implement
these rules. These electronic circuits are together
called hardware. One may realise a complex operation by
using various sequences of elementary operations., For
example, one may realise a multiplication operation by
repeated use of addition operation. A sequence of ele-
mentary processing rules is called a program and may be

Introduction 3

thought of as a maero operation. A set of macros could
be used to perform more complex tasks. We can thus
build up a hierarchy of programs, all stored in the
computer's memory, which can be invoked by any user to
perform a very complex task. A user need not work only
with the elementary processing rules available as hard-
ware functions. He can use the hierarchy of programs
which constitute the goftware of a computer and which
is an integral part of a general purpose digital compu-
ter.

It should be observed that it is possible to per-
form macro operations entirely by specially designed
electronic circuits rather than by using macros. Thus
software can be replaced by hardware and vice versa.
What basic tasks are to.be performed by hardware and
what is to be done by combined software and hardware is
an engineering de51gn decision which depﬂnds on costs
and other constraints prevalllng at a given time. One
of the purposes of this book is to brlng out the hard-
ware - software trade off which is 1mportant in the de-
sign of general purpose computers.

Specialised digital subsystems do not normally re=-
quire a detailed study of software - hardware trade off.
They are usually designed to perform a specific proce-
ssing function using available processing elements. The
first part of the book considers this design problem.
The second part of the book is concerned with the more
difficult problem of de81gn1ng general purpose digital
computers. 5

CHAPTER 11

BINARY NUMBERS, CODES AND ARITHMETIC

In designing digital systems it is necessary to
count and perform arithmetic operations such as addition,
subtraction, multiplication and division. In this chap-
ter, we discuss how these operations could be performed
reliably and economically.

2.1 Numbering Systems

The most widely used number system is the positional
system. In this system the position of a digit 7
indicates the significance to be attached to that digit,
For example, the number 8972.443 is taken to mean

8 x 103 + 9 x102 +7x 101 + 2x10° +ux10t
1000th 100th Tenth Unit 1/10th
position position position position position

+ 4 x107%2 + 3x 1073
1/100th 1/1000th
position position

In this notation 8003 cannot be written as 83 as the
zeros in the middle give a different weight to 8.

An example of & non-positional number system is the
Roman numeral systam. This number system is difficult

‘to use due to the absence of a symbol for zero.

Positional number systems have a radix or a base.
In the decimal system the radix is 10. A number System
with radix r will have r symbols. A number in a radix
r system would be written in general as:

ap ap_q 8,9 e+ 8g ¢ Ay 8, ... a_p

and would be interpreted to mean:

ar +a Mol aoro + a_lr-l + a 2r'2 + eee

-m
a_,r

Binary numbers, Codes and Arithmetic 5

The symbols a,, an.j,a.p used in the above representa-
tion should be one of the r symbols allowed in the sys-
tem. In the above representation is called the most
significant digit of the number and a__ (the last digit)
is called the least significant digit.

In digital instruments and computers, the number
system used has a radix 2 and is called the binary sys-
tem. In this system only two symbols, namely 0 and 1
are used. The symbol is called a bit , a shortened
form for binary digit. Computers use the binary system
as many physical elements used for storing and operating
on numbers in digital systems are by their nature binary
or two state devices. For example, a hole in the card
is either punched or not punched, a switch is either
"ON" or "OFF". 1In each one of the above cases no other
state exists. Many other elements like transistor cir-
cuits are not intrinsically binary but operate with maxi-
mum reliability when used in the binary mode.

A number in the binary system will be written as a

sequence of 1l's and 0's. Thus, for example, 1011.101 is
a binary number and would be taken to mean:

1x23 +0x22 +1x2t +1x20+1%x2"L+0 x2-2

+ 1 x -3
The equivalent number in decimal is. thus:
8 +0+2 +1+1/2 +0 +1/8 = 11,625

The following table gives the decimal numbers from
zero to seventeen and their binary equivalents.

Decimal Binary Decimal Binary Decimal Binary

0 0 6 110 12 1100
1 1l 7 111 13 1101
2 10 8 1000 14 1110
3 11 9 1001 15 1111
4 100 10 1010 16 10000
S 101 11 1011 17 10001

Table 2.1 Binary Equivalents of Decimal Numbers

It is seen that the length of binary numbers can
become quite long and cumbersome to use. Octal system
(base 8) is thus often used to convert binary to a form

6 Digital Computer Design

requiring lesser number of digits. The octal system
uses the eight symbols 0, 3 eee 7o As its radix
8 is a power of 2, namely 2%, 1t is fairly simple to
convert binary to octal and vice versa. (One must

contrast this with conversion of binary to decimal)

Example 2.1
Binary number: 001 100 111 001
Octal equivalent: 1 . 4 7 1

Decimal equivalent: 1x83 + ux82 + 7x81 + 1x80

812 + 256 + 56 + 1

825

As illustrated in Example 2. 1, one may convert
a blnary number to octal by grouping together succe-
ssive- three bits of the binary number starting with
its leas't significant bit. These three bit groups
are then replaced by their octal equivalents. This
works because all the digits in the octal system,
namely 0, 1, «ec., 7, may be represented by three bit
groups. Table 2,2 illustrates this:

Octal Binary Octal Binary Octal Binary

0 000 3 011 6 110
1 001 4 100 7 111
2 010 5 101

Table 2.2 Octal Numbers and Their Binary
Equivalents. .

Because of the simplicity of binary to octal
conversion it is often faster, when converting from
binary to decimal, to first convert from binary to
octal and then convert the octal to decimal.

Another base which is often used in digital sys-
tems is known as hexadecimal. In hexadecimal pase
there are sixteen symbols. Thus each hexadecimal
symbol may be represented by a 4 bit equivalent. Hexa~-
decimal representation of 4 bit binary numbers is given
in Table 2.3.

Binary numbers, Codes and Arithmetic - 7

Binary Hexadecimal Binary Hexadecimal
L 4
0000 0 1000 8
0001 1 ¢1001 9
- 0010 2 1010 A
0011 3 1011 B
0100 4 1100 c
0101 5 1101 D
0110 6 1110 E-
0111 7 1111 F

Table 2.3 Hexadecimal Numbers 4and their Binary
Equivalents.

Example 2.2
Convert the following binary number to hexadecimal

Binary number: 10 1010 1011 0111
Hexadecimal: 2 A B . 7

2.2 Decimal to Binary Conversion

Inr addition to knowing how to convert binary num-
bers to decimal it is also necessary to know the tech-
¢nique of converting a decimal number to a binary number.
The method is based on the fact that a decimal number

may be represented by:

d = ap2™ + a,_2°71 4+ L.+ g2l 4 ap20 (2.1)

If we divide d by 2, we obtain:

: = = n-1 n-2 0
QuO‘tlent q = d/2 = an2 + an_l2 t cee *t a12

(2.2)

and Remainder »r = a,

Observe that a, is the least significant bit of the
binary equivalent o d. Dividing the quotient by 2 we
obtain:

- _ n=2 n-3 0
qQ/2 = d/(2x2) = aj? ta 42 A -TY

(2.3)

and Remainder equals aye

