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Abstract

A system that enables the pictorial specification of
queries in an image database is described. The queries
are comprised of rectangle, polygon, ellipse, and B-spline
shapes. The queries specify which shapes should appear
in the target image as well as spatial constraints on the
distance between them and their relative position. The re-
trieval process makes use of an abstraction of the contour of
the shape which is invariant against translation, scale, ro-
tation, and starting point that is based on the use of Fourier
descriptors. These abstractions are used in a system to lo-
cate logos in an image database. The utility of this approach
is illustrated using some sample queries.

1. Introduction

A basic requirement of an image database is to perform
content-based searches for images. In [9] we presented a
pictorial query specification tool for objects represented by
points. In this paper we extend this tool to permit query
primitives that have a spatial extent such as ellipses, rect-
angles, polygons, and B-splines. Breaking down the image
in terms of these primitives can be viewed as a classifica-
tion approach. At times, it could be the case that the objects
in the image cannot be decomposed into components that
are comprised of these primitive shapes. In this case, we
need an abstraction of the contour of the shape which ide-
ally is invariant against translation, scale, rotation, and start-
ing point, while still representing the essential form of the
contour. We propose a method based on Fourier descriptors
1o achieve this effect. A comparison with other shapes rep-
resentations, e.g. with invariant moments was made in [4].
In the rest of this paper we describe our query specification
and shape description methods, and study their effective-
ness by querying a database of logos obtained from the US
patent office (e.g., Figure 2(c)). For related work with lo-
gos, see [1,7,12] where the goal is to locate a logo in the
database based on a sketch of the logo, or with the intro-
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duction of noise, or vanations in oricntation or scale. In
contrast, our goal is to find logos whose components con-
sist of user-defined shapes, while also providing a way of
specifying the extent of the similarity.

2. Image Processing

The shapes in a logo image are preprocessed by mor-
phological closing and opening operations using structure
elements of different sizes. This either disconnects com-
ponents connected only by a few pixels (opening) or con-
nects components which are only a few pixels apart from
each other (closing). Furthermore, the closing or opening
smooths the contours of the shapes.

Each image component is approximated with each of the
following shape types: rectangle, ellipse, polygon, and B-
spline. Next, the quality of these approximation shape types
is evaluated, and the image component is classified as the
shape type that approximates it best. In case of a tie, the
approximation shape type with the smaller number of pa-
rameters is given priorily, e.g., classification as an ellipse
is preferred to classification as closed B-spline. Currently
we can only handle the rectangle, ellipse, polygon, and B-
spline shapes. Future work includes recognizing a straight
line, arc, chord, pie slice, and freehand drawing shapes.

3. Logo database

The components of the logo images are stored using
a prototype spatial database system called SAND (spatial
and non-spatial data) developed at the University of Mary-
land [2]. In SAND, data is stored in tuples consisting ‘of
attributes for geometric entities such as points, lines, poly-
gons, etc. (some of which are supported for arbitrary num-
ber of dimensions). in addition to traditional ones like inte-
gers, floating point numbers, and character strings. SAND
can index both spatial — including high-dimensional points
— and non-spatial data using different methods (e.g., PMR-
trees. R-trees, kd-trees [8]). The central relation is the table
of extracted image components. For each image compo-
nent, we store the result of the classification which is one of
the approximation shape types described above, 2 minimum



bounding box as a rough approximation of the spatial extent
of the component, and a reference to the image from which
the component was extracted. The possible classifications
are represented by the query primitives (e.g.. a polygon, el-
lipse, etc.). In Section 5 we describe how pictorial queries
are specified using these query primitives. All query prim-
itives can have individual spatial representations, e.g., the
representation of a polygon consists of a list of points, while
an ellipse can be represented using a rectangle. Thus, we
have different relations to store the spatial representation of
image components.

In some cases, it may be impossible to classify the image
components using one of the approximation shape types. In
this case, we represent the component as a feature vector,
termed its abstraction in contrast to its classification. The
database contains both the classification and the abstraction
for each image component, where in some cases the classi-
fication may be unknown. The advantage of storing both the
classification and abstraction in the database for each com-
ponent of a logo image is that this provides more flexibility
for the query processing as the user may want to use the ab-
straction for a particular query image component instead of
its classification (see [10] for more details).

4. Fourier Descriptors

Each image of the logo database is decomposed into its

image components, i.c., its connected components. As an .

abstract representation of image components, we use their
Fourier descriptors, which are made invariant against trans-
lation, scale, rotation, and their starting point. We retain the
phase which contains essential information about the con-
tour of the image component.

4.1. Definition and Properties

Consider the N contour points of an image component
as a discrete function x(n) = (z;(n), z2(n)). Using this
function, we can define a discrete complex function u(n) as

u(n) = z,(n) + jz2(n).

u(n) can be transformed into the frequency domain by the
Discrete Fourier Transformation (DFT). The result can be
transformed back into the spatial domain via the Inverse
Discrete Fourier Transformation (IDFT) without any loss.
DFT and IDFT are defined as a(k) and u(n), respectively:

N-1

1 )
k)= — —92mkn/N p — _NJ2,... ,N/2-1
a(k) anzou(n)e /2,...,N/
N-1
un)= 3" a(k) 2N n= —Nj2, . N2 -1
k=0

The coefficients a(k) are also called Fourier descrip-
tors [6]. They represent the discrete contour of a shape in
the Fourier domain.
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Certain geometnic transformations of the contour func-
ton u(n) can be related to simple operations in the Fourier
domain. Translation by uo € T affects only the first Founier
descriptor a(0), while the other Fourier descriptors retain
their values. Scaling of the contour with a factor « leads
to scaling of the Fourier descriptors by a. Rotating the
contour by an angle @y yiclds a constant phasc shift of 8
in the Fourier descriptors. Changing the starting point of
the contour by ng positions results in a linear phase shift of
27nngk /N in the Fourier descriptors [6].

4.2. Normalization

The contour functions are made invariant against transla-
tion by setting the first Fourier descriptor a(0) to zero which
moves the centroid of the contour onto 0. Since the contours
are traced counterclockwise and describe a nonzero area,
we can rely on the fact that the second Fourier descriptor
a(1) = r; €% is nonzero (5] (tracing it clockwise would
imply that a(—1) is nonzero for a contour with nonzero
area). Therefore, we can divide all Fourier descriptors by
the magnitude of the second Fourier descriptor to obtain a
scale invariant vector: a(k) = a(k)/|a(1)].

Rotation invariance could be achieved by simply taking
the magnitude of each Fournter coefficient, but hereby an es-
sential part of the information about the contour is lost. To
achieve rotation invariant Fourier descriptors that still rep-
resent the shape of the original contour, we can use the ori-
entation of the basic ellipse, which is defined by the Fourier
descriptors a(1) = r; ¢/¥* and a(—1) = r_, €7¥-!, as

u.(n) = a(-1) e~ 2 n/N a(1) eI2xn/N

With a few transformations, and with the abbreviation ¢ =
{1 — p-1)/2, we get

uc(") . ci(v’—r"Wx)/Q

[,_, eI @H2mn/NY 4 ei(\5+2xn/N)]
which shows the rotation . of the basic ellipse as:

Pe = (p-1 +91)/2.

Using the orientation of the basic ellipse leads to an ambigu-
ity of 7 radians. Therefore, the ‘rotation invariant’ Fourier
descriptors are only rotation invariant modulo a rotation by
m radians. Figure | illustrates this for a set of equal con-
tours at different scales and rotations which are normalized
by the above operations.

Now, only the position of the starting point remains to
be normalized. This can be done by subtracting the phase
of the second Fourier descriptor, weighted by k, from the
phase of all Fourier descriptors, that is,

a(k) = a(k) e~Irk,

After this normalization, the starting point is approximately
at angle 0.
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Figure 1. Original and nonnallzed contours.
5. Pictorial Query Specification

:i
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We briefly review how individual pictorial queries are
specified using our method. For more details and examples,
see [3,11]). The matching similarity level (msl) is a value
between 0 and 1. Components in the database are consid-
ered 10 match a query component if they are similar with
respect 10 a certain similarity measurement (see Section 6).
The extent similarity level (esl) is an upper bound for
the difference in spatial extent. The contextual similarity
level (csl) specifies how well the content of a database
image D matches that of a query image Q. The choices are:

1. All components, and no others.
2. All components, and maybe others.
3. Any of the components, but no others.
4. Any of the components, and maybe others.
The spatial similarity level (ssl) specifies how close the
database image D and the query image Q are with' respect
to distance and directional relation between the symbols
in the query. We distinguish between five different levels
which are defined as
1. exact same location
2. same relation, bounded distance
3. same relation, any distance
4.  any relation, bounded distance
5. any relation, any distance.

A pictorial query consists of query primitives. The user
selects the desired query primitive using check buttons (see
Figure 2(b)). Next, an instance of the query primitive can
be drawn onto the canvas (see Figure 2(a)). Currently, the
implementation supports the rectangle, circle, ellipse, poly-
gon, and closed B-Spline query primitives. Note, that cir-
cles are included into the interface in order to help the user
to draw real circles. During the processing phase they are
handled as ellipses. Query primitives can be positioned ar-
bitrarily. The matching, contextual, spatial, similarity, and
extent level for the query is defined using combo boxes (see
the bottom of Figure 2(a)).

6. Pictorial Query Processing

A query can be processed in either classification or ab-
straction mode. In the classification mode, the database
is searched for the specified query primitives. In order to
check the extent similarity of an image component and a
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query primitive we compute the factors ) and a, that scale
the respective query primitive and image component so that
it fits into a rectangle of width 1. Then the difference is
determined as {a; — o3| which is required to be less than
esl. Similarity between two ellipses or two rectangles is
mecasured using the aspect ratio of their minimum bound-
ing boxes. Similarity of two polygons is measured using
the ratio between the area of the intersection polygon and
the maximum area of both polygons. This ratio becomes |
if the polygons are equal, and is zero if they do not inter-
sect. Similarity of two closed B-Splines is measured using
the same method, whereby the control points are interpreted
as defining polygons. This makes sense as a B-spline is
uniquely determined by its control polygon.

Due to the ambiguity of 7 radians in the rotation invari-
ant’ Fourier descriptors that was described in Section 4, we
maintain two Fourier descriptors in the abstraction mode for
each component in the query image after which the starting
point of both vectors is normalized. Next, the database is
searched for both vectors. For this, we use a'spatial in-
dex provided by SAND to perform a fast search for vec-
tors in the database which are at a small Euclidean dis-
tance from the vectors of the query component. The maxi-
mum distance for the nearest neighbor search is determined
by the value of msl. Currently we use 16 Fourier de-
scriptors (k = —8,...,—1,2,...,9), which result in 32-
dimensional vectors (as we have both real and imaginary
parts, and we ignore a(0) and a(1) since they are 0 and 1,
respectively, due to normalization). The factors a; and aq
are given by the first Fourier descriptor of the respective
component as 1/|a(1)|, and the extent similarity check is
done as described above.

After a set of matching images has been found, the con-
textual similarity and spatial similarity check is performed.
This has been described in detail in [3).

7. Sample Queries and Results

Figure 2(a) is an example of a pictorial query consisting
of four shapes: a circle and three rectangles. These shapes
are required to have the same spatial relation as ssl=3. The
contextual similarity level (i.e., 2) stipulates that all compo-
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Figure 3. Logos retrieved by the query in Fig-
ure 2(a) with no spatial constraints.
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Figure 4. (a) Sample query with three circles,
and (b)~(e) the logos that satisfy the contex-
tual constraint of containing three circles.

(b) and (c) @@ (e)

nents in the query image must occur in the database image,
while the database image may contain other components.
The extent similarity level is set to 0.1 which allows quite
different sizes for the matching components. Figure 2(c)
shows the result of this query.

Figure 3 shows six logos that satisfy the contextual con-
straint of containing at least three rectangles and one circle
for the query in Figure 2(a). The logo in Figure 2(c) also
fulfills it. This logo is the only one in the database that also
satisfies the query’s spatial constraint.

Figure 4(a) is another query. It contains three circles.
csl=2 and ssl=3 (i.e. the components may have any distance
but the directional relation must be similar). Figure 4(b)—
(e) shows some logos that only satisfy the contextual con-
straints. Closer scrutiny of Figure 4(e) reveals the absence
of any circles. The shapes are obviously misclassified. The
other two result logos (Figures 4(d) and 4(c)) actually con-
tain three circles. The best result of the query is shown in
Figure 4(b). Here we find the circles in the desired spatial
configuration.

Finally, Figure 5 shows an example query processed in
abstraction mode and the retrieved logos. It contains a u-
bend and a circle. ¢sl=2 and there are no spatial constraints.
The sizes are supposed to be similar. The result images are
ordered by their matching rank, i.e., Figure 5(b) has first
rank and is the best match. All result logos actually contain
a u-bend and a circle, except for the one in Figure S(h).
Note, that the u-bend occurs at different rotations.

8. Concluding Remarks and Future Work

Both classification and abstraction queries produced ac-
ceptable results. The main advantages of the abstraction ap-
proach compared with the classification approach is that we
have a greater flexibility in choosing an arbitrary shape of
the components of the query image. Future work involves
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Figure 5. (b)~(h)Logos that are retrieved
based on Fourier descriptors using query im-
age (a), msl=0.6, csl=2, es|=0.01, and ssi=5.

extending the pictorial query specification tool to incorpo-
rate other shapes as well as freehand shapes.
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Abstract

In this paper, we propose a robust face recognition tech-
nique based on the principle of eigenfaces. The traditional
eigenface recognition (EFR) method works quite well when
the input test patterns are cropped faces. However, when
confronted with recognizing faces embedded in arbitrary
backgrounds, the EFR method fails to discriminate effec-
tively between faces and background patterns, giving rise
to many false alarms. In order to improve robustness in
the presence of background, we argue in favor of learn-
ing the distribution of background patterns. A background
space is constructed from the background patterns and this
space together with the face space is used for recognizing
faces. The proposed method outperforms the traditional
EFR technique and gives very good results even on com-
plicated scenes.

Keywords: Face recognition, eigenfaces, face detection,
background learning

1. Introduction

In the literature, several works have appeared on the face
recognition problem (1, 2, 3, 4, 5]. One of the very success-
ful and well-known face recognition methods is based on
the Karhunen-Loeve (KL) expansion [3]. In 1986, Sirovich
and Kirby [3] studied the problem of KL representation of
faces. They showed that if the eigenvectors correspond-
ing to a set-of training face images are obtained, any im-
age in that database can be optimally reconstructed using
a weighted combination of these eigenvectors. The paper
explored the representation of human faces in a lower di-
mensional subspace. In 1991, Turk and Pentland (5] used
these eigenvectors (or eigenfaces as they are called) for face
detection and identification.

Methods such as EFR work quite well provided the in-
put test pattern is a face i.e, the face image has already been
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cropped and plucked out of a scene. The more general and
difficult problem of recognizing faces in a cluttered back-
ground has also received some attention in [1, 5). The au-
thors in [1, 5] propose the use of distance from face space
(DFFS) and distance in face space (DIFS) to detect and
eliminate non-faces. We show with examples that DFFS
and DIFS by themselves (in the absence of any informa-
tion about the background) are not sufficient to discriminate
against arbitrary background patterns. The traditional EFR
technique either ends up missing faces or throws up many
false alarms, depending on the threshold value. In this pa-
per, we extend the EFR technique to solve the more general
problem of robustly recognizing multiple faces in a given
scene with background clutter. We explore the possibility
of constructing a “background space’ which will represent
the background images corresponding to a given test im-
age. If the background space is lecarnt well, it is our claim
that patterns belonging to clutter will be closer to the back-
ground space than to the face space. This provides a basis
for eliminating false alarms which would otherwise have
crept in. )

2. Effect of Background

The problem involving non-face test images is a difficult
one and some attempts have been made to tackle it [, 5].
In [5), the authors advocate the use of distance from face
space to reject non-face images. If T} is the projection of
the mean subtracted image pattern T in the face space, then
f‘,- can be expressed as

I
Ti = Zw;u"
n=1

where w, is the weight corresponding to eigenface u,, and
L' is the number of eigenfaces used. The distance from face
space (DFFES) is then defined as

\T; — Tl )



It has been pointed out in [5] that a threshold 8 p g5 could
be chosen such that it defines the maximum allowable dis-
tance from the face space. A test pattern is treated to be
a face provided its DFFS value is less than 8prrs. In or-
der to perform recognition, the difference error between the
weight vector and the weight vector corresponding to every
person in the training set is computed. This error is also
called the distance in the face space (DIFS). The face class
in the training set for which the DIFS is minimum is de-
clared as the recognized face provided the difference error
is less than an appropriately chosen threshold 8p;rs.

However, it is difficult to conceive that by learning just
the face class we can segregate any arbitrary background
pattern against which the face patterns may appear. As we
will show, it may not always be possible to come up with
threshold values that will result in no false alarms and yel
detect all faces. What would truly be desirable is to have
a way of setting the threshold high, so that very few face
images are rcjected as unknown, while at the same time all
tncorrect classifications are detected. This is exactly what
we attempt to do in this paper. We believe that some prop-
erties of the background scene local to a given image must
be extracted and utilized for robust face recognition.

3. The Background Space

We argue in favor of leamning the distribution of back-
ground images specific to a given scene. It is to be ex-
pected that background distribution will favor background
images while the distribution of faces would favor the face
pattemns. .In any given image, the number of background
pattems usually far outnumbers the faces. To learn the dis-
tribution of the background, we need to generate sufficiens
number of observation samples from the given test image.
We use simple thresholding to separate background patterns
using the a priori statistical knowledge base of faces or the
face space. Let m,,m,, .. -my be the mean values of the
weights corresponding to each face class in the training set.
Here ¢ is the number of face classes or people in the train-
ing set. In the face space, let the weight vector of the test
subimage z be given by W. Then, the pattern z is treated as
a background image if the Euclidean distance of its weight
vector from each of the class mean weights is greater than a
predefined threshold 65 i.c.,

(2)

then the image pattemn is considered to be a non-face im-
age. For high confidence, this threshold is chosen to be
large enough. Sufficient number of background patterns can
be obtained from the given test image in this manner. These
patterns would represent a reasonable sampling of the back-
ground scene. The mean and covariance estimated from the
samples obtained via (2) allow us to effectively extrapolate

If "K_mg”>0b Vi, i=ll"‘lq

1o other background patterns as well. A background image
reconstructed with the eigenbackground images can be ex-
pected 1o have smaller error as compared o the case when
it is reconstructed using eigenfaces.

We group the background patterns into K different clus-
ters by the classical K-means algorithm where each cluster
contains one pattern center. Each pattern center is treated o
be representative of all the samples within its cluster. Thus,
we can significantly reduce the number of background im-
ages that we have to dcal with.

The pattern centers returned by the K-means algorithm
are used as training images for learning the background
space. Although the pattern centers belong to different clus-
ters, they are not totally uncorrelated and further dimension-
ality reduction is possible. The procedure that we follow is
similar to that used to create the face space. We first find the
principal components (KL expansion) of the background
pattern centers or the eigenvectors of the covariance ma-
trix C; of the set of background pattem centers. The space
spanned by the eigenvectors corresponding to the largest K’
eigenvalucs of the covariance matrix Cy is called the back-
ground space. The significant eigenvectors of the matrix
Cs, which we call "eigenbackground images’. form a basis
for the background image patterns.

4. Robust Face Recognition

In this section, we propose a robust face recognition
scheme that finds faces by searching a given test image for
patches of image patterns of faces embedded in a cluttered
background and finally classification. Training data sam-
ples of image patterns of faces are first used to create the
face space. Given a test image, the background is then lcamt
‘on the fly' and the background space corresponding to that
test image is derived. Finally, the system classifies a subim-
age as being either a known face or as a background pattern
by using the knowledge of both the face space and the back-
ground space.

Once face space and the background space are leamnt,
the test image is examined again, but now for the presence
of faces at all points in the image. Let the subimage pat-
temn under consideration in the test image be denoted as z.
The vector z is projected onto the face space as well as the
background space to yield estimates of z as £; and Z, re-
spectively. The test pattern z is classified as belonging to
the ‘face class’ if

llz — 271 < llz — 2l

and ||z - %s|” < fpFrs ©)}

where 8prrs is an appropriately chosen threshold. Recog-
nition of z is then carried out as follows. The weight vector
W corresponding to paitem z in the face space is compared



with the pre-stored mean weights of each of the face classes.
The pattern z is recognized as belonging to the ith person if

i= m;‘nuw—mju’, i=1...,9
and  |\W.— m;||*> < 0prrs (4)

where ¢ is the number of face classes or people in the
database and fp; g is a suitably chosen threshold.

Since a background pattern will be better approximated
by the eigenbackground images than by the eigenface im-
ages, it is to be expected that ||z — 3| would be less than
llz— 2| for a background pattem z. On the other hand, if
z is a face pattern, then it will be better represented by the
face space than the background space. Thus learning the
background space helps to reduce the false alarms consid-
erably and imparts robustness to the EFR technique.

5. Experimental Results

In this section, we demonstrate the performance of the
proposed scheme on two different datasets i) the standard
Yale face database and ii) face database generated in our
laboratory. The Yale database consists of 165 gray scale
frontal images of 15 subjects. These are taken under differ-
ent lighting conditions and facial expressions, and our in-
tention is to test the proposed method under different con-
ditions. For our experiments, we selected 15 individuals
and 10 training images for each individual. The images
were cropped to 33 x 33 pixel arrays. The face space was

constructed from this training set offline. After some ex-~

perimentation, the number of significant eigenvectors was
found to be 40 for satisfactory performance. The database
created in our laboratory consists of-images of 8 subjects
with 10 images per subject. The face images were cropped
to 21 x 21 pixel arrays for training. The number of signif-
icant eigenfaces used to create the eigenface space for this
database was chosen to be 20.

The system was first tested by artificially embedding im-
ages of some of the subjects from the Yale database at ran-
dom locations in different test images of size 128 x 128
pixels against a background scene that included trees, roads
and building structures. The test image was scanned for the

. presence of faces at all points in the image. If a face pat-
tern is found at any location in the test image, a white box
is drawn at that location. For the second set of experiments,
test images were captured in our laboratory and the subjects
appear naturally in these real images. The background con-
sisted of computers, furnitures etc. These images serve 1o
represent real face recognition situations. A black box is
drawn at the location where the system finds a face.

For the proposed method, the eigenbackground space
was learnt ‘on the fly’ for each test image using the method-
ology discussed in Section 3. Thresholds @pFrs and
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8p1rs were chosen to be the maximum of all the DFFS
and DIFS values, respectively, among the correctly recog-
nized faces in the training set. The number of background
pattern centers was chosen 1o be 600 while the number of
eigenbackground images were chosen to be 150. The num-
ber of eigenbackground images was arrived at based on the
accuracy of reconstruction of the background pattems.

Results corresponding to Yale database for the two meth-
ods are shown in Fig. 1. The figures are quite self-
explanatory. The traditional EFR incurs many alarms when
it attempts to recognize all the faces in the image. On the
other hand, the proposed method detects all the faces with-
out false alarms. Results obtained on real images captured
in the laboratory are given in Figs. 2 - 3. Our method
utilizes the background information quite effectively in or-
der to discard non-face patterns, whereas the traditonal EFR
throws up false alarms.

6. Conclusion

In the literature, the eigenface technique has been
demonstrated to be very useful for face recognition. How-
ever, when the scheme is directly extended to recognize
faces embedded in background clutter, its performance de-
grades as it cannot satisfactorily discriminate against non-
face pattemns. In this paper, we have presented a robust
scheme for recognizing multiple faces in still images of nat-
ural scenes against a cluttered background. We argue in
favor of constructing a background space from the back-
ground images of a given scene. With moderate computa-
tional complexity, the scheme outperforms the traditional
EFR technique and gives accurate recognition results on
real images with almost no false alarms even on fairly com-
plicated scenes.
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Figure 1. (a) A test image with faces embedded in it. (b) Recognition results corresponding to
traditional EFR using both DFFS and DIFS. Even though the faces are correctly recognized, there
are a lot of false alarms in the upper right corner. (c) Output results for the proposed EFR method.
There are no false alarms and both the faces are correctly recognized.

®)

Figure 2. (a) A real test image where a person appears naturally against a cluttered scene. (b) Face
recognition results for the traditional EFR technique using both DFFS and DIFS. (c) Recognition

results with proposed method.

Figure 3. (a) Test image consisting of desks and computers as background clutter. Recognition
results for (b) traditional EFR, and (c) proposed method. Note that traditional EFR throws up many

false alarms.
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Abstract

We present a method coupling multiple switching lin-
ear models. The coupled switching linear model is an
interactive process of two switching linear models. Cou-
pling is given through causal influence between their
hidden discrete states. The parameters of this model are
learned via EM algorithm. Tracking is performed through
the coupled-forward algorithm based on Kalman filtering
and a collapsing method. A model with maximum likeli-
hood is selected out of a few learned models during track-
ing. We demonsitrate the application of the proposed
model to tracking and recognizing two-hand gestures.

1. Introduction

Gesture recognition plays an important role in a host of
man-machine interaction applications. Although some
gestures are expressed by one hand, many of them are
done by two hands. To model these two-hand gestures, we
have to consider interactions between the two hands. We
assume that a two-hand gesture is an interacting process
of the two hands whose shapes and motions are described
by the switching linear dynamics [2,3,6], and propose a
coupled switching linear dynamic model to capture inter-
actions between the two hands.

CHMM (coupled hidden Markov model) [4] has been
proposed to deal with interacting processes. However,
since CHMM inherits from HMM, it has a limitation in
treating time series having dependencies like shape-
changing hand gestures.

Reynard [5] has introduced a coupling concept to track
complex motions, however, that means just a coupling of
two kinds of continuous state variables in a single process,
and is essentially different from interaction considered
here.

We demonstrate an application of the coupled switch-
ing linear model to tracking and recognizing two hands
whose shapes change during their motion. The presented
coupling scheme enables tracking both hands even when
one of them is not observed well in images by occlusions
or complex backgrounds. And it also gives probabilistic
explanation to recognition of gestures by combination of
two hands.
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2. Coupled switching linear model

2.1 Model specification

To represent a variety of shapes of a hand, it may be an
efficient way that outlines of the hand are parameterized
by active contour model using B-spline, which was well
established in [1]. A curve is parameterized into a control
vector composed of B-spline control points. A control
vector is transformed to a low-dimensional shape vector
on a specific shape space formed with some key control
vectors. Then the shape vector, s, , is considered as a state
vector in switching lincar dynamics:

(2]

Switching linear model can be seen as a hybrid model
of the linear state-space model and HMM. It is described
using the following set of state-space equations:
x=F.x +D, +u,u ~NQOQ,)
¢-.,,m,., = p(m,, | m,)
z, = p(m)

In the above equations, x, is a hidden continuous state

(1)

vector. y, is independently distributed on the Gaussian

distribution with zero-mean and covariance 0, - Ty
£, and p_, which are typical parameters of linear dy-

namic model, denote the prior probability of a discrete
state, the continuous state transition matrix, and the offset,
respectively. The parameters with the subscript m, are

dependent on the discrete state variable m, indexing a

linear dynamic model. And the switching process between
discrete states obeys the first Markov process and is de-
fined with the discrete state transition matrix ¢.

Coupled switching linear model is an interactive
process of two switching linear models. Coupling is given
through causal influence between their hidden discrete
states. The complex state space representation is
equivalently depicted by dependency graph in Figure 1.

To accommodate another interacting process, it seems



good enough to consider a single lumped system with
dimension-increased state variables. However, there exist
a few problems. Due to increased number of discrete
states, the computational cost is prohibitive, and sufficient
data can rarely be obtained for estimation of parameters,
usually resulting in under-sampling and numerical under-
flow errors [4]. Consequently, the suggested coupling
scheme, as shown in Figure 1, offers conceptual advan-
tages of parsimony and clarity with computational bene-
fits in efficiency and accuracy. This is revealed in the
following sections.

@ 6 0 @ 6

L
@g‘_‘("g_‘
A ]

Lbb e d

Figure 1. Coupled switching linear model. m, and n, denote
discretc state variables. X, and y, denote continuous state
variables. Z, and w, denote observation vectors.

In the coupled switching linear model, since transition
between discrete states is Markov process, it follows that
p(mr'"l I ml"“'ml-l.nl" “'nl—l )
=p(m,,n, |m,_,n,_)
Assuming
p(m,,n, | m_,n,_)e< p(m, | m,_,)- (2)
p(m, |\ n_)p(n, |n,_)p(n | m,_)
referred to in (4], transition probability of joint discrete
states can be parameterized as
plm,n|m_,n_ )=k,

-1

r"c-|"'nq)"4-|": -ahy (3)
where £, is a normalizing constant, T is the state
transition matrix representing causal influences between

two switching linear system, and superscript ~ denotes the
lower switching linear system in Figure 1.

2.2 Coupled-forward algorithm

Following [3], given the known parameters of
switching linear dynamics, the predicted joint-contin-
uous state variable and the corresponding covariance are
defined dependently on m,_ =i and m =j:

(s) - )
xph = le,_“,_, + DJ

(r.s) 4] £ (4)
Pm:l’ = F/Pz~||4—| Fj +Q,
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where x)_and p',  are the filtered continuous states and

its covariance at time f—1 based on information up to
time ¢—1. Now the filtered joint-continuous state x:;")
and its covariance py'/! are estimated by the conventional
Kalman updating algorithm. [n particular, we follow
Kalman filtering application” of [1] to active contour
model.

From the above fact, as noted by [3], switching linear
dynamic mode! requires computing a Gaussian mixture
with M’ components at time t for M switching states. [f
coupled with a N-switching linear system as shown in
Figure 1, typically M‘+ N’ computations are required,
which is clearly intractable for moderate sequence length.
It is necessary to introduce some approximations to solve
the intractable computation problem.

We collapse M?+N? jointed continuous state
variables into M + N state variables at each time, and can
avoid prohibitive increase of computational cost. The
following collapsing method is given: Expediently only in
terms of the upper system in Figure 1.

i( i ‘{m,_' = i, n_, :ii, ) 'x(..n]
_ . e
x'('{} _ = =kt m = j,n = jj|O, O
p(m,=j|0,)

P, o
sl Y plm_ =in_ =ii,m =j.n=j\0)

wel, =1
=y -(P,,‘,"” +(x,‘,” -xf;‘")(x,‘," _xx.n)')
plm, =j|0)
where O, is a sequence(o,,0,,---,0,) and o, is an obser-
vation vector (z,,w,)-

The filtered coupled-joint distribution of discrete states
is defined by

plm,_yn,_,m,n, | 0,) )
=k oz, | ), | Y ™) plm o1y sman, | OL)
where k is a normalizing constant. From (2) and (3) the

prediction step given sequence up to time s gives
p(ml'ntvmlol'"nl | OI)= kpq’

() —
R =

N,

o N
@, T >pm,n,,m.n|0,)
LN
P, 10)=Y plm,,m,m,,.n,,10,) (3)

m n,

p(m,|0)="3 plm,.n.m,_.n_|0,)

g oMy Py

M
X, = 2. pm, | O,)xi

m, =1
where I(p is a normalizing constant. Now (6) and (7) are

iterated during filtering process.



2.3 Coupled -backward algorithm

While the coupled-forward algorithm is a filtering
process given sequence up to current time, the coupled-
backward algorithm is a smoothing process given se-
quence of full length. Like the conventional Kalman
smoothing method, joint-continuous state variable and its
covariance are smoothed [3]. And the collapsing is simi-
larly performed using the following probability of the
smoothed coupled-joint discrete states:

plm,n,m.n,10)=plm n,,m,.n,10)

PmnalOr) ®
pAm,,n,10)
From (9) the followings are obtained as
plm,n|0)= 3 plm,,n,,m,,n..10p) (10)
plm | 0) =73 p(m,,n,|O;) an
L

3. EM learning

EM algorithm is a general iterative technique for find-
ing maximum likelihood parameter estimates in problems
where some variables are unobserved [7]. It is natural to
use EM algorithm for our problem, in which unobserved
variables are continuous state variables x,,y, and dis-
crete state variables m, , n,. .

Assuming that the probability density for an
observation sequence is parameterized using A, which
consists of {F,Q,7r,®,T} and {ﬁ‘ L0, 7, ®, f} . its
auxiliary log-likelihood is given by

L= [plog p(M, Ny, X;,Y,,0, | A)dX,dY,

Mr Ny x oy, '
=E;,[logp(M,,N,,‘X,,)’,,O, | )] (12)
where (M,,N;) and (X;,Y,), are sequences(of length
T) of discrete states and continuous states, respectively,
A is the parameter set estimated previously, and
P=p(My, Ny, X;, Yy | O,,2). EM algorithm starts with

some initial guess and proceeds by applying the following
two steps repeatedly until the likelihood converges:

E-step On the condition given the observation sequence
of full length O, and the previous parameter set A, we
estimate the hidden continuous states and discrete states
through the backward process following the forward
process described in sections 2.2 and 2.3.

M-step If L is expressed by A and the estimations
from E-step, then we estimate A maximizing L.

4. Recognition
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Recognition of hand gestures can be considered as the
problem to determine which model tracks a hand gesture
well. Therefore, a given sequence of hand gestures can be
recognized by means of the likelihood values of candidate
models.

In order to track and recognize hand gestures simulta-
neously, we have to compute the likelihood of each model
while tracking is being performed with the coupled-
forward algorithm.

If the coupled switching linear model is represented by
the parameter set A, log-likelihood L, of A at time

7 is obtained by

L, = logh) a3

=

where k, has been computed in (6).

5. Experimental Result

An observation, 0,, is shown as edges detected by line

searching along the normal direction at sample points on a
hand contour [1]. Generally the use of a skin color model
gives robustness to the edge detection. However, the edge
detection using color models fails well when a hand
moves in front of a face, which is frequent in hand
gestures considered. Figure 2-(a) shows two saparate
trackers of hands using conventional switching linear
model [6]. The left hand tracker was not able to catch a
finger’s moves due to failure in the detection of edges.
However, in Figure 2-(b) where the presented coupling
method was applied, since the right hand tracker forces
the left one to operate its own switching dynamics, the left
tracker could track successfully regardless of failures in
edge detection. We can confirm it in Figure 3 which
shows transition between discrete states in the left hand
tracker. The left hand model has been trained to have
three states: State 1 corresponds to moving one’s fist,
state 2 describes shape changes from stone to scissors,
and state 3 corresponds to moving the scissors to the
origin. If coupling is applied, switching discrete states is
well performed as shown in Figure 3-(b).

(b) with copling

Figure 2. Tracking two hands

For the purpose of recognition during tracking,
tracking is performed through the coupled-forward



algorithm with respect to all models. At the same time,
likelihood values for all models are computed by (13).
Accordingly, an observed sequence is recognized as the
model with the maximum likelihood.

» ¢ 2w & e =

(a) Without coupling (b) With coupling

Figure 3. Transition between discrete states.

We have prepared two gesture models in order to test
whether the proposed scheme is effective 1o express
combinational property of two hand gestures. Two gesture
models were designed to have three discrete states for
each hand. In gesture model A two hands change their
moving patterns at the same time. Gesturc model B has
the similar moving patterns to gesture model A except
different changes of moving pattems on the way as shown
in Figure 4.

The different changes of moving patterns can be
explained by differences in causal influences between
both hands. The causal influences were parameterized as
I,{° through the EM leaming. When the two models are

applied to the image sequence of Figure 4-(a), the two
models can track the given sequences since they have
similar motions. However, Figure 5 shows that the
difference between likelihood values of the models
increased severely from about 70™  frame, at which the
different change of moving patterns happpened. This fact
confirms that with the causal influences denoted by T,T",

the proposed coupled switching linear model well
explains the interaction between two hands.

7. Conclusion

We have proposed a coupled switching linear model,
which is an interacting process between two switching
linear models and presented its EM learmning method using
a collapsing method. We have applied the proposed
scheme to recognizing two-hand gestures. The presented
method showed the effectiveness in tracking shape-
changing hands under failures in feature detection. And it
also showed satisfactory results that two-hand gestures are
recognized and tracked simultaneously.
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Abstract

Relevance feedback (RF) is an iterative process
which improves the retrieval performance by utilizing
the user's feedback on retrieved results. Traditional RF
techniques use solely the short-term experience and
are short of knowledge of cross-session agreement. In
this paper, we propose a novel RF framework which
facilitates the combination of short-term and
long-term experiences by integrating the traditional

methods and a new technique called the virtual feature.

The feedback history of all the users is digested by the
system and is represented as a virtual feature of the
images. As such, the dissimilarity measure can be
adapted dynamically depending on the estimate of the
relevance probability derived from the virtual features.
The results manifest that the proposed framework
outperforms the one that adopts a single traditional
RF technigue.

1. Introduction

Since the users in general do not know the make-up
of the image database and the techniques used for
indexing, the query formulation process should be
treated as a series of tentative trials until the target
images arc found. Relevance feedback (RF) is an
automatic process which fulfills the requirements of
the query formulation.

‘Let a user initialize a query scssion by submitting
an image represented by Q =(q,,q,,...,q,) Wheretis

the number of seclected features and ¢, is the

calculated value of the ith featurc. The retrieval system
compares the query image with each of the database
images, say D=(d,d,...d,) . by deriving the
dissimilarity measure Dist(Q, D) . The top k database

images that have the smallest dissimilarity score are
then retumed to the user. If the user is not satisfied
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with the retrieved result, he or she can activate an RF
process by identifying which retrieved images are
relevant to the query and which are not. The system
will adapt its intemal parameters to involve as many
desirable images as possible in the next retrieved
result. The process is repeated until the user is satisfied
with the retrievals. The general system flow chart of
the RF process is depicted in Fig. 1. In the following,
the main RF techniques for image retrieval are
presented.

The query vector modification (QVM) approach [1]
repeatedly reformulates the query vector as the mean
difference vector between relevant images and
nonrelevant ones, in the attempt to redirect the query
vector toward a more desired area. The feature
relevance estimation (FRE) approach [2] assumes, for
a given query, some specific features may be more
important than others when computing the similarities
between images and the query. The most natural way
of estimating the individual feature relevance is to
verify the retrieval ability using each feature alone.
Finally the feature relevance is used as a weight
incorporated into the dissimilarity metric. The
Bayesian inference-based (BI) approach [3] estimatés
the posterior probability that a database image is
relevant to the query given the prior feedback history.
The probability distribution over all database images is
updated after each feedback iteration, the system is
therefore able to improve the future rctrieval
performance.

These methods suffer their respective shortcomings.
First, the QVM put equal emphasis on every relevant
image by averaging their featurc vectors, however, not
every relevant image has the same magnitude of
relevance. Second, the success of both QVM and FRE
is based on the assumption that the distributions of the
feature vectors of the relevant images form an intrinsic
cluster. Whereas, no matter how sophisticated featurcs
are selected, they are insufficient to fully represent the
image semantics, and the relevant images will usually
do not form a single cluster. Third, without storing the



relevance information directly, some information is
lost such as the relevance significance of each
individual image. The BI approach is theoretically the
most flexible one since it does not rely on the nearest
neighbor criterion. However, the Bl approach needs
more feedback iterations to accurately approximate the
posterior probability distribution. So it is less efficient
than the other RF techniques. _

Moreover, all the three kinds of RF approaches
improve the retrieval performance based on the
feedback history within one query session. Hence, the
previous approaches maintain a form of short-term
memory that captures the user’s intention for only this
specific query. There is no consideration being taken
for the cross-session feedback history, which is a form
of long-term memory that captures the common
agreement among various query sessions. The
long-term memory is useful in leading the feedback
process to converge at an earlier iteration.

2. The Proposed Approach

To digest the relevance information accumulated
from within- or cross-session query experiences, we
add a virtual feature (VF) to the feature vector of each
of the database images. The VF is determined by the
set of relevant images and is used to assist the original
pictorial features to evaluate the similarity degree
between images in accordance with the human subject.
The details of the proposed approach are presented as
follows.

2.1 Virtual Feature Computation

Given a query Q=(q,,4,,..9,) » the retrieval

system firstly searches the top k nearest images using
the dissimilarity metric of the adopted short-term RF
technique. If the user is not satisfied with the result, he
would activate an RF process by identifying relevant
and nonrelevant images. We denote by R the set of
identified relevant images. Initially, the VF of each
database image is empty. Each relevant image
D =(d,,d,,...d,) in R will derive its VF by requesting
a number from a system counter. The system counter
starts counting from 1 and is increased by 1 after every
time it is requested. Therefore, all the images in R will
be assigned the same value as their VFs to mark that
these images deliver the same concept possessed by
the query.

As the feedback process repeated, one case may
anise that some of the images in R have been already
assigned the VFs. The relevant images that have not
determined their VFs yet will be firstly given a
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number from the system counter and this number is
then concatenated by the VFs of the other relevant
images and converted into a canonical form. We define
the canonical form 3 with the set of positive integers
Z" and a concatenation operator ® as follows. The
concatenation operator ® is defined by

(e dc; ifc; <c,,
P o _ < e, .
¢ ®c! ={c] Bcf ifc,>c,,
tey H =
L c; if ¢, =¢;,

where ¢;, ¢;, ¢; and ¢; are in Z'. An expression fis in
canonical form S if f=cf ®@cl @ @ct-, where

¢; < ¢ if i < j. Apparently, canonical form 3 holds a
closure property. Formally, f;, 7€ S — f; ® € 3.
The closure property guarantees that the VF yielded by
concatenating several VFs is still in the canonical form
g.

In this way, each value in the VFs represents a
relevance concept impressed by a certain user, and the
system can digest multiple concepts of image
relevance in the VFs. To estimate the relevance
between the query and database images, the VF of the
query is computed as the concatenation of the VFs of
all images in R which are specified in the previous
feedback iteration, i.e., VR@)=VARD)®VRD)®---
®VADy) De R where VF() denotes the VF of the

corresponding image. The VFs of the query and the
database images are used to define the dynamic
dissimilarity measure which will be discussed in the
next subsection.

2.2 Probabilistic dissimilaﬁty measure

Let the VF of an image D be ¢* ®c} ®--®c%, we

firstly define the concept set of image D as
C(D) ={c,,¢,,...C,, } » €aCh concept ¢; is associated with
a support value ;. The larger the cardinality of the
concept set, the more general the overall concept
delivered by the image. Also, the larger the support
value, the more important to the image the
corresponding concept. We define the probability that
D is semantically recognized as concept ¢, or the
confidence that D is delivering concept ¢, given VF(D)
¥ (D cFD) =

™

€

J=
Assume the two events that the concepts delivered by
the query and by the database image are independent
given their VFs. The probability, denoted by Posoires?

;

that the query Q and the database image D are



delivering the same concept given their VFs is
calculated by

Pouoiyr; = PQ ¢andD c|VF(Q),VF(D))

&« CINIC1D)
= PQ c|VF@)pDL c|VFD)"

€, €CONC(D)Y
Based on the probability estimate, we define a
dynamic dissimilarity measure as Dist,(Q,D)=
po.qyp,(Dis(Qy D)—A)y+(1- po.qu,)(Dis‘Qy D) +A4),
if both VF(Q) and VF(D) are known, and
Dist,.(Q, D) = Dis{Q, D) otherwise, where A is the
quantity of the maximal distance adjustment, and
Dist(Q, D) is the distance metric defined by the

short-term RF technique incorporated into our
approach. The first equality can be rewritten as

Distye(Q. D)= (1~2pp. e JA+ Dist(Q.D) - It is
observed that Dis¢,.(Q, D)< Dist(Q, D) if

Powoyrs >05-
Dist,(@.D) > Dist(@.D) if p, .. <05 . and

Dist,.(Q,D) = Dist(Q,D) if Bouogpr, =05

Therefore, the proposed method dynamically adjusts
the distance between the query and the database
images based on the estimate of Pouoiyr: which is

derived from the long-term feedback history.
Compared with the existing RF techniques, the

proposed method has the following features.

® We assume neither the shape of the nearest
neighborhood of the query nor the presence of one
cluster containing all relevant images.

® The relevance information of the original users’
intention is stored directly in the VFs. This
mechanism enables us to define a flexible
dissimilarity measure.

® The proposed method combines the short-term and
long-term RF techniques to establish an effective
retrieval system.

3. Experimental Results

We have implemented the QVM approach [1] and
the proposed VF technique. The UCR database is
chosen for the experiments. The database is obtained
from the UCR Visualization and Intelligent Systems
Lab (VISLab) [4]. There are 10038 images covering a
variety of outdoor scenes such as castles, cars, humans,
animals, etc. Some sample images are shown in Fig. 2.
Since the number of images in the database is
tremendous, it is laborious to classify these images
manually. As such, we employ the c-means clustering
algorithm [5] to automatically classify thesc images
into 70 classes for performance evaluation purpose.
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Each image is represented by a 16-dimensional feature
vector using the Gabor filters [6].

Also, n all the experiments, the performance is
measured using the precision rate defined as
Relevance Retrievals
" Total Retrievals

To simulate the practical situation of online users,
the sequence of query images is generated randomly
until each database image has been chosen at least
once. Each query session is allowed to refine its
retrievals by executing the RF process for two
iterations. The average precision rates obtained at
three different stages, namely the one without any
relevance feedback (PRO), the one after the first
feedback iteration (PR1), and the one after the second
feedback iteration (PR2), are computed, respectively.

To understand the influence on the growing of
precision rates by using the proposed VF technique,
the accumulated precision rates that are averaged over
the number of processed queries are plotted in Fig. 3.
There is a fluctuating period in the beginning of the
plotted curves depending on which images are firstly
selected as query images. After this period, the
accumulated precision rates climb up rapidly due to
the contribution of the use of the active nearest
neighborhood learned by the VFs. Looking at the
curve of PRO, it reveals that the precision rate obtained
even before performing the feedback iterations can be
as high as 95% because the relevance information of
the previously processed queries provides a valuable
clue. Also, the improving ratio from PRO to PRI is
higher than that from PRI to PR2. This is a desired
property since the users can not stand too many
feedback iterations and they expect a greatly improved
result after the first feedback. On the other hand, if we
use solely the QVM method, there is no gain on the
retrieval precision along the number of processed
queries. As a result, the accumulated precision rates
hold themselves to a relatively fixed value as shown in
Fig. 4.

Next, we analyze the scalability of the proposed
approach on the storage requirement of the VFs. First,
we construct nine subdatabases from the UCR
database. Each subdatabase consists of the images that
arc a certain amount of percentages of the original
database volume (from 10% to 90%) and includes at
least one image from every labeled class. Fig. 5 shows
the storage requirement for the average length of the
VFs. It is observed that the memory needs of the VFs
grow less than three times when the test subdatabase
size varies from 10% to 100% of the original database
volume. Thus the proposed method is scalable against
the variations of database size.

Precision Rate = x 100% *



4. Conclusions

In this paper, we have presented a new RF approach
for content-based image retrieval. The traditional RF
techniques use only within-session query experience
to improve the retrieval precision. We devise a new
technique called the virtual feature which digests the
cross-session query experiences to give the retrieval
results that are more satisfactory. Experimental results
show that the proposed retrieval system which uses a
combination of short-term and long-term relevance
information performs better than that adopting the

short-term RF technique only. Fig. 2 Sample images from UCR database.
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