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Preface

/

‘The intention of the author in writing this book is to provide
"a concise but rigorous exposition of the fundamentals of the

mathematieal theory of information. - Since the basic work of

C. E. Shannon appeared in 1948, a good deal of work has been
done in this field. K Nevertheless there exists at present no single
reference to Whlch one interested in this subject can turn for

presentation which is up to date and yet reasonably complete. ¢

Tt is hoped that the present work may help to fill this gap.

At the préent stage of ifs development, information theory can %

be divided into. two fairly distinet branches: The first of these

. deals with the general propertxes of cha.nne1s of various types,

proving various theorems concermng their smtablhty for trans-
mitting information, while the second deals with the actual

‘ implementation of these general theorems. At present, the

former is somewhat further developed than the latter. For
example, while it is known that a noisy channel with nonzero
capacity can be used to transmit information at a rate arbi-

trarily close to its capacity and with an arbitrarily small proba-
bility of reception error, no constructive method yet exists for

are, nonetheless, a number of interesting and mgemous papers.

achieving this, even in the simplest nontrivial channelt There
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viii PREFACE

“devoted to:the construction of specific’ codes in channels of

various types However, a detailed treatment of these papers

would have  increased the length of this ‘book considerably

"beyond that contemplated The closest approach to their
subject matter occurs in Section 7.3.

The main tool' used in Chapters 1 to 4 and 7 is the probablhty
theory of finite systems, as treated, for example, by Feller [1].
'The mathematical prerequisites for Chapters 5 and 6 are some-
what more stringent. - What is needed is the notion of a general
probability space; the- mathematleal appara.tus required for this

is the theory of measure and the general Lebesgue mtegra.l.

While we have included a brief section which sketches those parts

of the theory needed, for all details the reader must be referred to ;

one of the several exceﬂent treatises on the subject Chapter 7

is entirely independent of Chapters 5 and 6, however, and may be

. read, if desired, following Section 4.1.
The Remarks congist of vanous material intended to comple-

ment the discussion in the toxt. Most of the references are

given here, as well as the details involved in the more ﬂaglant
~ cases of results which are referred to in the text as easily demon-
strated.” = For this reason, they should be read along with, if not
in advance of, the text. ;
Amiel Feinstein
Copénhagen ; :
January, 1957
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CHAPTER ONE

Introductory Concepts

The theory of information which we shall develop in this book
originated in the work of C. E. Shannon in 1948, In his funda-
mental paper, Shannon set up a mathematical scheme in which
the concepts of the production and the transmission of informa-
tion could be defined quantitatively. He then formulated and
proved a number of very 'general- results which showed the impor-
tance and usefulness of these definitions. Since 1948 a num-
ber of papers have been published which simplify and extend :
Shannon’s original work. At the same time, various others have
attempted to apply information theory to physics, chemistry, and
various branches of biology and psychology. These applications -
will not be touched upon here; in any case, there exist several
books, dealing specifically with them, to which the interested
reader may be referred. : ! g
Our' subject matter is mainly deductive in nature, i.e., it is
possible to start with, a small number of definitions and derive

everything else from them, and indeed this is the path we shall

essentially take. At the same time, the theory deals with terms
such as information content, information source, rate of trans-
mission of information, i.e., terms which carry a certain amount
of intuitive meaning. It will therefore be of interest, at each

/.



2 FOUNDATIONS OF INFORMATION THEORY

step of the mathematical developraent, to compare our results
with the dictates of intuition. We shall see that the basic con-
cepts of the theory are readily interpreted in terms of intuitive
notions. Of course we cannot expect the same of the more
advanced results of the theory. These are basically limit
theorems of en involved nature, which may serve as a guide to
the intuition of anyone wishing to delve further into the field.

Of the difficulties which confront us when we at’pempt to con-
struct a quantitative theory in which the concepts ‘‘production
of information’’ and “transmission of information™ are mean-
ingful, two stand out at once. - First, we must construct a mathe-
matical model in which we can speak of information being pro-
duced and transmitted: Second, we must assign a quantitative
measure to the amount of information involved. At first glance,
‘it might appear that the solution to thég second problem would
follow directly from that of the first. That this is actually not
the case will be apparent from further .consideration of the
question.

Intuitively, we would agree that we receive mformatlon when- '
ever we are informed of an event whose occurrence was previ-
ously not certa.m Furthermore it is reasonable that, within
certain limits, at least the more likely an event is, the less infor-
mation is conveyed us. by the knowledge of 'its actual occurrence.
Ignoring for the moment this last remark, we can already intro-
duce a certain amount of formalism into the discussion, Let
represent an’ event (i.e., its occurrence) and &’ its complement
" (i.e., its nonoccurrence), and let p, and p.r denote the probabilities
of these two events, so that p. + p»r = 1. Let I, denote the
amount of information conveyed to us by the knowledge of the
occurrence of z. Since z is specified enly by its probability P,
we assume I, to be a function of p, i.e., I, &1 (pa), where I( ) is
a non-negative function defined on the range of values of P,
namely 0 < p, < 1; the value p, = 0 being meaningless in the
present discussion. Similarly we put I, = I(ps). Since the
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INTRODUCTORY CONCEPTS = 3

proba.bxhty of recelvmg the amount I, of information is p., and

that of receiving I, is p./, the average (qr expected) amount of -
_ information received is given by p.I(p.) + purI(p-). S1m11ar1y,(
iif we have a set 21, . . . , 2, of mutually exclusive events such
~ that ps, + ¢+ + P, = 1, then it is reasonable to consider

0L (Pz) + ¢+ 0 F Dol (p,,,,)/ as the average amount of infor-.
mation conveyed by the knowledge of which z; actually occurred.
If p..= 0, evidently the corresponding term should simply. be

"omitted from consideration. The choice of the function 7( ) is

as yet in no way indicated.

It is, however, possible by continuing this type of reasoning
to obtain strong constraints upon the form of I( ). Consider
three mutually exclusive events z, ¥, 2, such that p, -+ Py + P =
1. Then H(z,y,2) = p.I(p.) + p,I(p,) + p.I(p.) represents the
average amount of information conveyed by the knowledge of
which‘among z, y, 2 actually occurred. Now, to determine which
among z, ¥, 2 actually occurred, it is, for example, sufficient to
determine whether or not z occurred, and in the svent that =

'did not occur, to determine which of ¥y, z did occur. The amoun$

of information conveyed by the first deterzination is evidently

- given by p.1(p.) + (1 — po)I(1' — p.), which we may dencne by

H(z,2'). If z did not occur, then the (cond tional) probabilities

of y and 7 are given by = and ;— respectively, The amount of
b ,

; information conveyed by the second de}zerxj‘s.u; ation is therefore

zl

given by I (p" g Pe ( ’)7 which we may denote by

H(y,zlz"). . But this latter amount of information is conveyed
only when the event z' occurs, and so we may take H{z,z') 4

- prH (y,2]a') as the total amount of information conveyed, on the .
‘average, by both determinations. It follc

s that a veasonable
reqtiirement on the function I( ) is that the relation H(z,z') +
pH (y,zlx’) = H(z,y,2) be satisfied for alk uxhwable- va.lues of
Pz Dy p; greater than zero. S 4




4 FOUNDATIONS OF INFORMATION THEORY

Let us express the H-functions in terms of ., py,, P.; le.,
We put H (z,x ) = H(p., 1 — P2, H (z,y,z) =H (pzxpwpt)7 a'nd

H(yzlz") = (i_f-L'p- g p) We requlre, then, that
s Ds
H(pzpysps) = H(ps 1 —p.) + (1 — p)H 1 2 p AT p,,)

Now the ideutical reasoning which led to this relation applies
if 2 is considered to be a composite event; i.e., we may consider
z to cor ~lst of the mutually exclusive events Uy o v ey Un—1.-Whose
probabilities we denote by pi, . . ., Pno1. We then obtain

- H(ug, . .. ’un—-l:y)z) H(uy, -« ’uﬂ—hz) + p,rH(y,z[a: ) 01‘,
- lettmg q1 = Py, @2 = Ds, 20d Py = p,t we obtain ' :

CH@py .+ o Praty@igs) = HDy oo D) + Bl (Z— ﬁ—)

This is actually a’ very strong condition; in fact, as we shall

* shortly see, it practically suffices to determine the form of
H(pi, . . - ,pa) without regard for the definition of H in terms
of I( ). However, one further 'conditioq is suggested by the
-fact that terms p;I(p;) were t0 be dropped when p; = 0, namely

_ that H(py, . . . ,pa) be defined even when some of the p; vanish,
but that it be oontmuous in the domain defined by p: > 0, i =

R A i +p,.—l We can now state:

Theorem. The following three condltlons determine the
function H(py, . . . ,p») Up to a multiplicative constant, whose
value serves only to determine the size of the unif of information.

1. H(p, 1 — p)is a continuous function of pfor0 < p < 1.

2. H(py, s, 05) 388 symmetnc function of all its variables.

3. 1f pu = g1 + g2 > 0, then

H (pls PR A Pn—1,91,92) = H (pl-" b Pn) + p,.H ~ ;i)

Tt is understood throughout that H(p,, . . . ,pa) is defined only
for a complete set of probabilities, i.e., a set of non-negative
number-; whose sum equa.ls one. :

A



_ INTRODUCTORY CONCEPTS  §

The proof is carried out in a series of lemmas.
Lemma 1. We have H(1,0) = 0. _ o
Proof. Using condition 3, H(14,14,0) = H (34,%5) - L5H(1,0).
But, uxing condition 2 and then 3, we have: H (%,%,O)
H(0,25,1%) = H(0,1) + H(A,/), which implies H(1,0) =
since H(1,0) = H@OI. =~ °

- Eemmin 2. We have H(p, . Pn0) = H(py, . . « ;).
Proof. By 2 we can assume that p, > 0, and the result then
follows by using 3 and then applying Lemma 1.

Lemma 3. We have

Hpi o o pantiy - < Coge) = Hpy . o0 o) F

i . y < ,.H ilr rRA S )-q—'-‘) y

whete po = g1 + * * * + g > 0. !
Froof. For m = 2 this is precisely condition 3. We proceed
by induction on'm; from Lemma 2 it is clear that we need con-
sider only the ¢ase when ¢; > 0,¢=1,...,m Suppose that
_there is an m such that the assertmn is true for all n. Then

using condition 3, we have

Hr\ph it }p’l—lyql, s 3 ,qm+1) ;
. = H(plﬁ % e ,Pn—-hQ!,P') +‘pIH (q‘zi e ’Qm—’H)
r P ;:
: = H(ph oS 5pﬂ) + 'an 91 pn + (q2 i s !gLTl)

-
.
.

T s

where p’ = 2+ * * * + @usa.
" But further,

H(E_l,...,Q_":ﬂ)=H _)+ v gﬂ,)
n Pn Pn Pa P

Substituting this into the preceding equation, we obtain the
assertion of .the lemma for m + 1. Note that the induction

=\
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6 FOUNDATIONS OF INFORMATION THEORY

must proceed first a.long m for n=2, and then a,long m for
general n. |

2 v

Lemma4. We hg.ve H(quy « @imi -+« 3Gnty « - - ,q.m,,) =

n

+.

B - AR DA 2 pH (Qtl S th), Where Pi=ga+
: £} 3

i=1

3 .‘+q‘-,“>p..“‘ ‘
Proof. Using Lemmd 3, we have i
‘H(Qn, AP S B P e YR58 s i ,Qnm.) = Pn (q;): C e yl’?i::)

+ H(QIIy . le ,q1mu & Mig/lke 74»—1 1y « « ,Qne—lm.‘_l;pn)"

- Shifting pa to the extreme left we continue, with the reduction, .

* finally obtammg the desired result after n steps. L
To continue, let us put-F(n) = (%, B %) for n > 2,
and F(1) = 0. .Applying the: preceding lemma to the case

M= e = = m, gy = —7;:—7—; we obtain F(mn) = F('(ﬂ) 4

#(n). For either m = 1 or n = 1, this relation is trivially satis-

© fled. - Furtﬁer, applying Lemma 3 to H (7—12, R %); we obtain

H(--, i ,l) ="H(1,"“1)
7 n n

from which follows : : . :

m_H(ln—-l)=
n

¥e now show:

/

B 5o, and also A, = F(n)
7

Fay. -‘jz = 1) — 0. : ; P

Lomma 5. Asn——+ 0 u,. =

P
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Proof. From the contmmty of H (p, 1 - p) follows 1,,.—-,
H(0,1) =0 asn——> w. Further,

= nF(n) (0 = DFGn 1)

from which follows nF(n;)' = z ke, or
g PR

1 n 7 2 7
=;Z =_ 2n n(n~+1) s‘km

2

Bt —iit z ke 18 Smely the anthmetlc mean of @he first

n{n + 1)

—@—g————l terms of the sequence n1, n2, 73, %3, 73, 73, . . . , whose
@

(i s R VR
limit, we have seen, is zero. Thus ————— z feqe— O as
" n(n ;

F(n)

- @, from wh:ch foHows hm —— = 0. Finally, we have

n_,.,ng

,\ﬂEF(n) -—F(n ~1) = 1, —‘;Lﬁ(n‘— 1)>0asn— w.

Nl

We now proceed to the problem of detefmining the form of
(r). It is clear from F(mn) = F(m) + F(n) that we only need
to Lnow the value of F(n) for prime . Indeed for arbitrary n
Tet n = 'pg*  + + p® be the prime factorization of n; then we sed '
that F(n) = a;F(pl) SR a.F\p,) We now put, for all

prime p, F P =¢c,Inp, ‘where In rep_resénts, as usual, the natural

logarithm. ‘Then F(h) =i, Inpy + - - - + aie, In p,.

Lemma 6. - The sequence c,, p=2 3 G ] ,‘énn—'--_ :
tains a largest member. :

Proof. Assume the contrary, fhen it is’ possible to czonstmcr
an infinite sequence of primes p, < P < Pps < - --such that
P1 =2, and Pisa is the"ﬁrst prime greater than p; for which
Cpiui~> Cpe It follows from this construction that if ¢ is & prime ;
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less than p;, then ¢, < ¢, For¢ > 1, Iét /T | =g - g
be the prime factorization of p; — 1. Now

Ane =F(p) — F(p; — 1)

= P@) ~ T80 0 — 1) + 6 ln (5~ 1) ~ Flp ~ 1)

~F) e (.
P An peti oy =Ll

-+ }"’1 a}‘(cpc & Q«f) in ¢;
e

Since p; — 1 is necessarily evén, on¢' of the ¢; must take on the

value 2. Since furthermore ¢,, > ¢cg;forj =1, . . . , s, wehave

8

aj(Cp, — €o;) In g = (cpy —c2) In2 > (¢, — €2) m2. Now as

7=1 3

£— o, p;— «; by Lemma 3, A,,— 0 and F;p,) — 0, while it is

ea,sxly shown that — In —%__ 0. Therefore we must have
].D p.~ P — 1

(€ps — ) M2 L0, 01 c,, < ¢, which contradicts the definition .

of Pa2.
In prec:sely the same way we can show the ex:stence of a
smallest member of ¢,, p = 2, 3, 5, . . ’

Lemma 7. F(n) = cInn, where ¢ is a constant.

" Proof. It suffices to show that all the ¢, are equal. Suppose

. there is a prime p’ such that ¢, > ¢2. Let p be that prime for
_which ¢, is & maximum; then ¢, > c;. Let m be a positive integer
and gf* + - - go* be the prime factorization of p — 1. From
F(pm)

™ p"‘ = c,; then just as in the

I’(mn) = F(m) -+ F(n) follows
A Ry
™ Inp* T pr—1 4
(¢, — ¢2) In 2. Letting m — =, we obtain (¢, — ¢5) In 2 <0,
which contradicts ¢, > ¢». In precisely the same way we can
show the nonexistence of any prime ¢ for which ¢, < ¢2; thus

proof of Lemma 6 we obtain )\,,... >

.w



INTRODUCTORY CONCEPTS 9

all the ¢, are equal. We can now complete the proof of the
theorem. y é

N ;
Let.p = 5 for integer r, 5. By Lemma 4 we have

1 1 ¥ s—7 ree o] 1
H( : '";>=H(;"§")+»;H(;f'"’;)
& 1 ilard
i 8 "q(;?r"”’s-—r)
from which foliows : : k&
H(p,1 —p) = F(s) — pF(r) —(L — p) F(s — 1)
=clnsg—pclnr — (1 —pleln{(s=71)
s 3
c(pln;w‘-(l—p)lns_r)
©.1 i
-4+ =p1 :
c(plnp'*-‘( p)n}—p)

By continuity, this result immediately extends to all irrational p.
Using condifion 3, it follows at once by induction on n that

et

n

H(pl, ceeaPa) =€ z Rl

i=1

?

! n

We notice . that H (p,, SaE ,p,;) is of the fomi zml (ps), and

ey

3
that if we take ¢ > 0, then I(p)is an increasing function of I —p.

Re ma.rks

f /
i. C. E. Shannon’s original paper (Shannon [1]) is reprinted in
Shannon and Weaver [1]. The application of information theo-
retic concepts to physies is thorcughly discussed by Brillouin [17;
a collection of various papers in which possible applications to:
chemistry, biology, and psychology are investigated has been
edited by Quastler [1, 2].
" The essentially statistical nature of most commumcatmn Sys~
tems had been recognized before Shannon’s work. In particu-
lar, it had been strongly emphasized by Wiener [1], who was the:

R



10 . FOUNDATIONS OF INFORMATION THEORY =

~ first to use it in attacking problems of prediction and filtering.
However, it seems fair to say that the concepts of channel and
information content, as well as the formulation of the basie
coding theorems, are due uniquely to Shannon.

ii. If, to'the three conditions which we have 1mposed onv

H(pi, . . + ,P»); one adds the requlrement ‘hat
fdie ) o fne B -1-,---,1).

n

be an mcreasmg f’unctlon of n, then the derivation of the form of

H(ps, Wy Ok much mmpler (cf. Appendix 2, Shannon and -
~ Weaver [1]). Khintchine [1] assumes Hpi, . .« ,pa) £ F(n),

and the assertion of Lemnds 2 and 4, in addition to conditions

1 and 2, to obtain the form of H(ps, . . . ,p.). The neat treat-

‘ment given here is due to Fadiev {1]. The result used, to the

n

‘effect tha.t lim a; = almphes hm hl- z a; = a,is easﬂy proved

e N30
t=1.

by statdard “epmlon—delta." arguments (cf. Theorem B, p. 262
of Halmos [1]).

¥ “



CHAPTER TWO
Basic Properties of H(X)

1 < > o ‘

;5 \

2.1. F wwpmnt

We have shown in the previous chapter how a few simple and
very reasonable requirements on the behavior of H(py, . . . ,pn)
suffice to determine it uniquely up to a muliiplicative constant.
Interesting as this result is, it in no way implies that the quantity
H(ps, . .+ ,ps) lends 1tse1f to any useful or interesting appli-
cations. What we wish to stress here is that the usefulness of
H(pi, . . . ,pn) lies not in the fact that it satisfies conditions 1 to
3 of Chap. 1, but rather in that it appears in a fundamental role
in many basic problems.of coding and communication. Our point

of view henceforth will be to assume the form H(py, . . . ,pa) =
n

- z p: In p; without further comment, leavmg its ]ustlﬁcatmn
i=1 [

to the various theorems whose proof is our main objective.

. 2.2. Fundamental inequalitiés &

Let X be ani abstract set consisting of a.finite number of ele-

“ments z. Let p( ) be a probability distribution defined over X,

i.e., p(Q) is a non-negative number defined for each subset Q of X,
W 11. :
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with the properties that »(X) = 1 and p(Q;\U Q.) = p(Qy) +
p(Q2) if Q@ and Q. are disjoint. ‘The totality of objects (X,z)
- and p( ) is called a finite probability space.

In terms of our discussion in. Chap. 1, we see that any finite
probability space can be considered an information source. We 1
will deﬁne the information ¢ontent H(X) of such a source to be

the non—negatlve quantity — z 2(z) log p(x), where here and °

henceforth the base of the logarlthm is 2. The choice of base is
clearly a choice of units only; with the conventional choice which
we have made, the unit of infurmation is called the “bit.”  To'
- avoid difficulties later on, we will define the 1ndeterm1nate form
0-log 0 to ha.ve the value zero. ~
' Suppose that (X,2) and (Y,y) are two finite abstract spaces.
We denote by X ® Y the finite abstract space consisting of all
pairs (z)y), and by »( , ) a probability distribution’ over X @ Y.
The information content of this source we write as H (X5Y) =

— Z Z p(z,y) log p(z,y). T he distribution p( , ) givesrise to a
distribution p(2) = Z p(z,y) over (X a:), and snmlarly to a dls-

tribution p(y) = zp(a:,y) over (Y,y). The mformatlon con- '
x = v

tents of the two sources thus defined are again denoted by H(X)
and H (Y) respeetxvely, without regard to the or1gm of p(x) or

p(=,9) .

@)
for each y sa.msfymg p(y) >0, a probablhty distribution over X.
We may therefore define a conditional information content

p(y). Further, the conditional probability p(zly) is,

H(Xly) = —'; p(zly) log p(zly), and also an average condi-
‘tional information content

H(X|Y) = Zp(y)fz(xm = = ¥ Y 50,9 log plzlp)
: : 749 |



