ELEMENTARY

APPLICATIONS
OF

PROBABILITY
THEORY

H.C. Tuckwell

Chapman and Hall



C10721
_ T39%8
Elementary Applications

of Probability Theory

Henry C. Tuckwell

Monash University
Victoria
Australia

London New York
CHAPMAN AND HALL



First published in 1988 by Chapman and Hall Ltd

11 New Fetter Lane, London EC4P 4EE
Published in the USA by Chapman and Hall
29 West 35th Street, New York NY 10001

© 1988 H.C. Tuckwell

Printed in Great Britain
by J.W. Arrowsmith, Bristol

ISBN 0 412 30480 5 (cased)
0 412 30490 2 (paperback)

This title is available in both hardbound and paperback editions. The paper-
back edition is sold subject to the condition that it shall not, by way of trade
or otherwise, be lent, resold, hired out, or otherwise circulated without the
publisher’s prior consent in any form of binding or cover other than that in
which it is published and without a similar condition including this condition
being imposed on the subsequent purchaser.

All rights reserved. No part of this book may be reprinted, or reproduced or
utilized in any form or by any electronic, mechanical or other means, now
known or hereafter invented, including photocopying and recording, or in any
information storage and retrieval system; without permission in writing from
the publisher.

British Library Cataloguing in Publication Data

Tuckwell, Henry C.
Elementary applications of probability

theory.

1. Probabilities 2. Mathematical statistics
I. Title

519.2 QA273

ISBN 0412304805
ISBN 0412304902 Pbk

Library of Congress Cataloging in Publication Data

Tuckwell, Henry C. (Henry Clavering), 1943
Elementary applications of probability theory.
Bibliography: p.

Includes index.
1. Probabilities. 1. Title.
QA273.T84 1988 519.2 87-22407

ISBN 0412304805
ISBN 0412304902 (pbk.)




OTHER STATIST%%T@XISJROM CHAPMAN AND HALL
? 2N

The Analysis of Time Series

C. Chatfield

Statistics for Technology
C. Chatfield

Introduction to Multivariate Analysis
C. Chatfield and A.J. Collins

Applied Statistics
D.R. Cox and E.J. Snell

An Introduction to Statistical Modelling 2
A.J. Dobson

Introduction to Optimization Methods and their Application in Statistics
B.S. Everitt

Multivariate Statistics—A Practical Approach =~ A TR .
B. Flury and H. Riedwyl

Multivariate Analysis of Variance and Repeated Measures
D.J. Hand and C.C. Taylor

Multivariate Statistical Methods — a primer
Bryan F. Manley

Statistical Methods in Agriculture and Experimental Biology
R. Mead and R.N. Curnow

Elements of Simulation
B.J.T. Morgan

Essential Statistics
D.G. Rees

Decision Analysis: A Bayesian Approach
J.Q. Smith

Applied Statistics: A Handbook of BMDP Analyses
E.J. Snell

Intermediate Statistical Methods
G.B. Wetherill

Further information of the complete range of Chapman and Hall statistics books is
available from the publishers.



Preface

This book concerns applications of probability theory. It has been written in
the hope that the techniques presented will be useful for problems in diverse
areas. A majority of the examples come from the biological sciences but the
concepts and techniques employed are not limited to that field. To illustrate,
birth and death processes (Chapter 9) have applications to chemical reactions,
and branching processes (Chapter 10) have applications in physics but neither
of these specific applications is developed in the text.

The book is based on an undergraduate course taught to students who have
had one introductory course in probability and statistics. Hence it does not
contain a lengthy introduction to probability and random variables, for which
there are many excellent books. Prerequisites also include an elementary
knowledge of calculus, including first-order differential equations, and linear
algebra.

The basic plan of the book is as follows.

Chapter 1: a review of basic probability theory;

Chapters 2—5: random variables and their applications;

Chapter 6: sequences of random variables and concepts of convergence;
Chapters 7-10: theory and properties of basic random processes.

The outline is now given in more detail.

Chapter 1 contains a brief review of some of the basic material which will
be needed in later chapters; for example, the basic probability laws,
conditional probability, change of variables, etc. It is intended that Chapter 1
be used as a reference rather than a basis for instruction. Students might be
advised to study this chapter as the material is called upon.

Chapter 2 illustrates the interplay between geometry and probability. It
begins with an historically interesting problem and then addresses the problem
of finding the density of the distance between two randomly chosen points.
The second such case, when the points occur within a circle, is not easy but the
result is useful.

Chapter 3 begins with the properties of the hypergeometric distribution. An
important application is developed, namely the estimation of animal
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populations by the capture—recapture method. The Poisson distribution is
then reviewed and one-dimensional Poisson point processes introduced
together with some of their basic properties. There follows a generalization to
two dimensions, which enables one to study spatial distributions of plants and
to develop methods to estimate their population numbers. The chapter
concludes with the compound Poisson distribution which is illustrated by
application to a neurophysiological model.

Chapter 4 introduces several of the basic concepts of reliability theory. The
relevant properties of the standard failure time distributions are given. The
interesting spare parts problem is next and the concluding sections discuss
methods for determining the reliability of complex systems.

Chapter 5 commences by explaining the usefulness of computer simulation.
There follows an outline of the theory of random number generation using the
linear congruential method and the probability integral transformation. The
polar method for normal random variables is given. Finally, tests for the
distribution and independence properties of random numbers are described.

Chapter 6 deals with sequences of random variables. Some methods for
studying convergence in distribution and convergence in probability are
developed. In particular, characteristic functions and Chebyshev’s inequality
are the main tools invoked. The principal applications are to proving a central
limit theorem and a weak law of large numbers. Several uses for the latter are
detailed.

Chapter 7 starts with the definition of random (stochastic) processes and
introduces the important Markov property. The rest of the chapter is mainly
concerned with the elementary properties of simple random walks. Included
are the unrestricted process and that in the presence of absorbing barriers. For
thelatter the probability of absorption and the expected time of absorption are
determined using the difference equation approach. The concluding section
briefly introduces the Wiener process, so fundamental in advanced proba-
bility. The concept of martingale and its usefulness are discussed in the
exercises.

Chapter 8 is on Markov chains. However, the theory is motivated by
examples in population genetics, so the Hardy—Weinberg principle is
discussed first. Elementary general Markov chain theory is developed for
absorbing Markov chains and those with stationary distributions.

Chapter 9 concerns birth and death processes, which are motivated by
demographic considerations. The Poisson process is discussed as a birth
process because of its fundamental role. There follow the properties of the Yule
process, a simple death process and the simple birth and death process. The
treatment of the latter only states rather than derives the equation satisfied by
the probability generating function but this enables one to derive the satisfying
result concerning the probability of extinction.

Chapter 10 contains a brief introduction to the theory of branching
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processes, focusing on the standard Galton—Watson process. It is motivated
by the phenomenon of cell division. The mean and variance are derived and
the probability of extinction determined.

It should be mentioned that references are sometimes not to the latest
editions of books; for example, those of Hoel, Pielou, Strickberger and
Watson.

In the author’s view there is ample material for a one-quarter or one-
semester course. In fact some material might have to be omitted in such a
course. Alternatively, the material could be presented in two courses, with a
division at Chapter 6, supplemented by further reading in specialist areas (e.g.
ecology, genetics, reliability, psychology) and project work (e.g. simulation).

I thank the many Monash students who have taken the course in applied
probability on which this book is based. In particular, Derryn Griffiths made
many useful suggestions. It is also a pleasure to acknowledge the helpful
criticisms of Dr James A. Koziol of Scripps Clinic and Research Foundation,
La Jolla; and Drs Fima Klebaner and Geoffrey A. Watterson at Monash
University. I am also grateful to Barbara Young for her excellent typing and to
Jean Sheldon for her splendid artwork.

Henry C. Tuckwell
Los Angeles, April 1987
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1

A review of basic
probability theory

This is a book about the applications of probability. It is hoped to convey that
this subject is both a fascinating and important one. The examples are drawn
mainly from the biological sciences but some originate in the engineering,
physical, social and statistical sciences. Furthermore, the techniques are not
limited to any one area.

The reader is assumed to be familiar with the elements of probability or to be
studying it concomitantly. In this chapter we will briefly review some of this
basic material. This will establish notation and provide a convenient reference
place for some formulas and theorems which are needed later at various
points.

1.1 PROBABILITY AND RANDOM VARIABLES

When an experiment is performed whose outcome is uncertain, the collection
of possible elementary outcomes is called a sample space, often denoted by Q.
Points in Q, denoted in the discrete case by w;, i=1,2,... have an associated
probability P{w;}. This enables the probability of any subset 4 of Q, called an
event, to be ascertained by finding the total probability associated with all the
points in the given subset:
P{A}= ) Plo}
€A
We always have
0<P{A} <],

and in particular P{Q} = 1 and P{J} =0, where (J is the empty set relative
to Q.

A random variable is a real-valued function defined on the elements of a
sample space. Roughly speaking it is an observable which takes on numerical
values with certain probabilities.

Discrete random variables take on finitely many or countably infinitely
many values. Their probability laws are often called probability mass functions.
The following discrete random variables are frequently encountered.
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Binomial

A binomial random variable X with parameters nand p has the probability law

m=PHX=H=(Zﬁ%“k (1.1)

= b(k; n, p), k=0,1,2,...,n,

where 0 <p<1,g=1—pandnis a positive integer ( = means we are defining
a new symbol). The binomial coefficients are

ny n!
k) kin—k)\

being the number of ways of choosing k items, without regard for order, from n
distinguishable items.
When n =1, so we have

Pr{X=1}=p=1—-Pr{X =0},

the random variable is called Bernoulli.
Note the following.

Convention

Random variables are always designated by capital letters (e.g. X, Y) whereas
symbols for the values they take on, as in Pr {X = k}, are always designated by
lowercase letters.

The converse, however, is not true. Sometimes we use capital letters for non-
random quantities.

Poisson

A Poisson random variable with parameter 2> 0 takes on non-negative
integer values and has the probability law

f oy

. k=0,1,2,.... (1.2)

For any random variable the total probability mass is unity. Hence if p, is
given by either (1.1) or (1.2),
.
l Z p=1

k

L |

where summation is over the possible values k as indicated.




Random variables 3
For any random variable X, the distribution function is
F(x)=Pr{X<x}, —oo<x<ow.

Continuous random variables take on a continuum of values. Usually the
probability law of a continuous random variable can be expressed through its
probability density function, f(x), which is the derivative of the distribution
function. Thus

. F(x+ Ax)— F(x)
lim ————
Ax—0 Ax
fim Pr{X <x+Ax}— Pr{X <x} (1.3)
Ax—0 Ax
o Pri{x <X <x+Ax}
Ax—0 Ax
Pr{Xe(x,x + Ax]}

= lim -
Ax—0 Ax

The last two expressions in (1.3) often provide a convenient prescription for
calculating probability density functions. Often the latter is abbreviated to
p.d.f. but we will usually just say ‘density’.

If the interval (x,,x,) is in the range of X then the probability that X
takes values in this interval is obtained by integrating the probability density
over (x4, X,).

X2

Prix, <X <x,}= j f(x)dx.

X1

The following continuous random variables are frequently encountered.

Normal (or Gaussian)

A random variable with density

l 1 __ 2
f(x)z\/mexp{—(—xz—gg)—} , — o0 < X < 00, (1.4)

where — oo < < oo and 0<o?< 0,

is called normal. The quantities yu and ¢ are the mean and variance
(elaborated upon below) and such a random variable is often designated
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N(u,0). If u=0 and o =1 the random variable is called a standard normal
random variable, for which the usual symbol is Z.

Uniform

A random variable with constant density

-

f(x)zm, —w<a<x<bh< oo,

is said to be uniformly distributed on (a, b) and is denoted U(a, b). Ifa=0,b =1
the density is unity on the unit interval,

Ffx)y=1, 0<x<l1

and the random variable is designated U(0, 1).

Gamma

A random variable is said to have a gamma density (or gamma distribution)
with parameters 4 and p if

Mgt

|
‘f(x)— . x30,  Ap>0.

The quantity I'(p) is the gamma function defined as
I'(p) = f x?"le™*dx,  p>0.

When p = 1 the gamma density is that of an exponentially distributed random
variable

irf(x)=)~e'“ | x> 0.

{1

For continuous random variables the density must integrate to unity:

=

where the interval of integration is the whole range of values of X.
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1.2 MEAN AND VARIANCE
Let X be a discrete random variable with
Pr{X =x,} = pw k=1, 25+

The mean, average or expectation of X is

For a binomial random variable E(X)=np whereas a Poisson random
variable has mean E(X)= A.
For a continuous random variable with density f(x),

-
E(X)= jxf(x)dx.

|

If X is normal with density given by (1.4) then E(X) = y; a uniform (a, b)
random variable has mean E(X) = i(a + b); and a gamma variate has mean
E(X)=p/A

The nth moment of X is the expected value of X™

Y. pixi if X is discrete,
k

E(X") =
Jx"f(x) dx if X is continuous.

Ifn = 2 we obtain the second moment E(X ?). The variance, which measures the
degree of dispersion of the probability mass of a random variable about its
mean, is

Var(X) = E[(X — E(X))*]

= E(X?) — E*(X).
The variances of the above-mentioned random variables are:
binomial, npg; Poisson, ; normal, ¢*; uniform, (b — a)*; gamma, p/A*.

The square root of the variance is called the standard deviation.

1.3 CONDITIONAL PROBABILITY AND
INDEPENDENCE

Let A and B be two random events. The conditional probability of A given Bis,
provided Pr{B} #0,
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Pr{AB)}

Pr{A|B}=W

where AB is the intersection of 4 and B, being the event that both 4 and B
occur (sometimes written 4~ B). Thus only the occurrences of 4 which are
simultaneous with those of B are taken into account. Similarly, if X, Y are
random variables defined on the same sample space, taking on values
xpi=1,2,...,y,j=1,2,..., then the conditional probability that X = x; given
Y=y;is, if Pr{Y =y} #0,

Pr{X=x,Y=y;}

PriX =¥ =yp=—Srmt o
J

the comma between X = x; and Y = y; meaning ‘and’.
The conditional expectation of X given Y =y, is

EX|Y=y)=) x;Pr{X=x|Y =y}

The expected value of XY is
EXY)=) xy;Pr{X=x,Y =y,
ij

and the covariance of X, Y is
Cov(X,Y)=E[(X — EX))(Y — E(Y))]
= E(XY)— E(X)E(Y).
The covariance is a measure of the linear dependence of X on Y.
If X, Y are independent then the value of Y should have no effect on the

probability that X takes on any of its values. Thus we define X, Y as
independent if

Pr{X:Xi|Y=yj}:Pr{X=xi}’ all l”
Equivalently X, Y are independent if
Pr{X =x,Y =y} =Pr{X=x)Pr{Y=y]),

with a similar formula for arbitrary independent events.
Hence for independent random variables

E(XY)= E(XX)E(Y),

so their covariance is zero. Note, however, that Cov (X, Y) = 0 does not always
imply X, Y are independent. The covariance is often normalized by defining
the correlation coefficient

Cov(X,Y)

OxOy

Pxy =



