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PREFACE TO THE FIRST EDITION

This book is intended as an easy and unfussy introduction to mathematical
analysis. Little formal reliance is made on the reader’s previous mathematical
background, but those with no training at all in the elementary techniques of
calculus would do better to turn to some other book.

An effort has been made to lay bare the bones of the theory by eliminating as
much unnecessary detail as is feasible. To achieve this end and to ensure that all
results can be readily illustrated with concrete examples, the book deals only
with ‘bread and butter’ analysis on the real line, the temptation to discuss gener-
alisations in more abstract spaces having been reluctantly suppressed. However,
the need to prepare the way for these generalisations has been kept well in mind.

It is vital to adopt a systematic approach when studying mathematical analy-
sis. In particular, one should always be aware at any stage of what may be
assumed and what has to be proved. Otherwise confusion is inevitable. For this
reason, the early chapters go rather slowly and contain a considerable amount of
material with which many readers may already be familiar. To neglect these
chapters would, however, be unwise.

The exercises should be regarded as an integral part of the book. There is a
great deal more to be learned from attempting the exercises than can be obtained
from a passive reading of the text. This is particularly the case when, as may fre-
quently happen, the attempt to solve a problem is unsuccessful and it is necess-
ary to turn to the solutions provided at the end of the book.

To help those with insufficient time at their disposal to attempt all the exer-
cises, the less vital exercises have been marked with the symbol T. (The same
notation has been used to mark one or two passages in the text which can be
omitted without great loss at a first reading.) The symbol * has been used to
mark exercises which are more demanding than most but which are well worth
attempting.

The final few chapters contain very little theory compared with the number
of exercises set. These exercises are intended to illustrate the power of the tech-
niques introduced earlier in the book and to provide the opportunity of some re-
vision of these ideas.

This book arises from a course of lectures in analysis which is given at the
London School of Economics. The students who attend this course are mostly
not specialist mathematicians and there is little uniformity in their previous

IX



X Preface to the first edition

mathematical training. They are, however, quite well-motivated. The course is a
‘one unit’ course of approximately forty lectures supplemented by twenty in-
formal problem classes. I have found it possible to cover the material of this
book in some thirty lectures. Time is then left for some discussion of point set
topology in simple spaces. The content of the book provides an ample source of
examples for this purpose while the more general theorems serve as reinforce-
ment for the theorems of the text.

Other teachers may prefer to go through the material of the book at a more
leisurely pace or else to move on to a different topic. An obvious candidate for
further discussion is the algebraic foundation of the real number system and the
proof of the Continuum Property. Other alternatives are partial differentiation,
the complex number system or even Lebesgue measure on the line.

I would like to express my gratitude to Elizabeth Boardman and Richard
Holmes for reading the text for me so carefully. My thanks are also due to
‘Buffy’ Fennelly for her patience and accuracy in preparing the typescript. Final-

ly, I would like to mention M.C. Austin and H. Kestelman from whom I learned
so much of what [ know.

July 1976 K.G.B.



PREFACE TO THE SECOND EDITION

[t is a pleasure to write a preface for the second edition of Mathematical
Analysis: A Straightforward Approach. The first edition was well-received and
I have therefore thought it wise to leave its text substantially unaltered except
for one or two minor points of clarification and the correction of misprints.
The major change is the addition of two long chapters on analysis in vector
spaces for which there has been a considerable demand. These get as far as the
idea of a derivative as a matrix and the use of the second order derivative of a
real-valued function in classifying stationary points. More advanced material
than this would seem to me better delayed until after the basic topological
notions have been mastered. As far as the material covered is concerned, it does
not involve the proof of many theorems and the necessary proofs involve no
new analytic ideas. However, the material does require a certain facility with
algebraic and geometric ideas and students with only a very limited knowledge
of linear algebra may find it heavy going in spite of the fact that §ome dis-
cussion of the necessary concepts from linear algebra is included where
appropriate. Another innovation is the inclusion of a collection of further
problems for which the solutions are not given. I am grateful to John Erdos
for some of these as well as other helpful suggestions. Teachers using this book
as part of a taught course may find these problems helpful in setting work but
I hope that they will not distract attention from the importance of working
carefully through the exercises given in the main body of the text.

Finally, I would like to express my appreciation to those who have com-
mented favourably on the first edition and to Mimi Bell for her patient help
in preparing the typescript for the second edition. |

October 1981 K.G.B.
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l REAL NUMBERS

1.1 Set notation

A set is a collection of objects which are called its elements. If x is an
element of the set .S, we say that x belongs to S and write

XE 3.

If y does not belong to S, we write y & S.
The simplest way of specifying a set is by listing its elements. We use the
notation

A= {}1,\2,e, 7}

to denote the set whose elements are the real numbers } 1,4/2,eand 7.
Similarly

B = {Romeo, Juliet}

denotes the set whose elements are Romeo and Juliet.

This notation is, of course, no use in specifying a set which has an infinite
number of elements. Such sets may be specified by naming the property which
distinguishes elements of the set from objects which are not in the set. For
example, the notation

C = {x:x>0}

(which should be read ‘the set of all x such that x > 0’) denotes the set of all
positive real numbers. Similarly

D = {y:y loves Romeo}

denotes the set of all people who love Romeo.

It is convenient to have a notation for the empty set Q. This is the set which
has no elements. For example, if x denotes a variable which ranges over the set
of all real numbers, then

x:x*+1=0} = ¢

This is because there are no real numbers x such that x2 = —1.
If S and T are two sets, we say that S is a subset of T and write
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if every element of S is also an element of T.
As an example, consider the sets P = {1,2,3,4} and Q = {2,4}. Then Q C P.
Note that this is not the same thing as writing Q € P, which means that Q is an

element of P. The elements of P are simply 1, 2, 3 and 4. But Q is not one of
these.

The sets A, B, C' and D given above also provide some examples. We have
A C C and (presumably) B C D.

1.2 The set of real numbers

[t will be adequate for this book to think of the real numbers as being
points along a straight line which extends indefinitely in both directions. The
line may then be regarded as an ideal ruler with which we may measure the
lengths of line segments in Euclidean geometry.

T TR

The set of all real numbers will be denoted by R. The table below distin-
guishes three important subsets of R.

Subset Notation Elements

Natural numbers
(or whole numbers) N 1,2,3,4,5,...

Integers | Z =2 =10 1,2,3, ...

Rational numbers
(or fractions) Q 0, 1,2,—1,%, %, §,—5,-—3,. g

Not all real numbers are rational. Some examples of irrational numbers are
\/2,eand .

While we do not go back to first principles in this book, the treatment will
be rigorous in so far as it goes. It is therefore important to be clear, at every
stage, about what our assumptions are. We shall then know what has to be
proved and what may be taken for granted. Our most vital assumptions are con-
cerned with the properties of the real number system. The rest of this chapter
and the following two chapters are consequently devoted to a description of the
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properties of the real number system which we propose to assume and to some
of their immediate consequences. A very much more systematic account of these

assumptions is given in the author’s book Logic, Sets and Numbers (see pp.
44—77).

1.3 Arithmetic

The first assumption is that the real numbers satisfy all the usual laws
of addition, subtraction, multiplication and division.
The rules of arithmetic, of course, include the proviso that division by zero is
not allowed. Thus, for example, the expression

2

| ——

0

makes no sense at all. In particular, it is not true that

2

0

:00‘

We shall have a great deal of use for the symbol e, but it must clearly be
understood that o does not represent a real number. Nor can it be treated as
such except in very special circumstances.

14 Inequalities

The next assumptions concern inequalities between real numbers and
their manipulation.
We assume that, given any two real numbers @ and b, there are three mutually
exclusive possibilities:

(i) a>b (ais greater than b)
(ii) a=b (aequalsh)
(iii)a <b (ais less than b).

Observe that ¢ < b means the same thing as b >a. We have, for example, the
following inequalities.

1>0:3>2: 2<3; —1<0; —3<—=2
There is often some confusion about the statements
(iv)a=b (ais greater than or equal to b)
(v) a<b (ais less than or equal to b).
To clear up this confusion, we note that the following are all true statements.

1 20: 3221121 2€ 3; —1 | 0; —3 %3,



4 Real numbers

We assume four basic rules for the manipulation of inequalities. From these

the other rules may be deduced.
(DIfa>band b >c,thena >c.

T | [

c b a

(IT) If @ > b and c is any real number, then
at+c>b+ec.

(IIT) If a > b and ¢ > 0, then ac > bc (i.e. inequalities can be multiplied
through by a positive factor).

(IV) If a > b and ¢ <0, then ac < bc (i.e. multiplication by a negative factor
reverses the inequality).

1.5 Example If a > 0, prove thata™! > 0.

Proof We argue by contradiction. Suppose that 2 > 0 but that ™! <0.
It cannot be true that ™' = 0 (since then 0 = 0.2 = 1). Hence

a ' <O.
By rule III we can multiply this inequality through by a (since @ > 0). Hence
1 = a'.a<0.a = 0.

But 1 <0 is a contradiction. Therefore the assumption @' < 0 was false. Hence
-3
a >0.

1.6 Example If x and y are positive, then x <y if and only if x? < y2.

Proof We have to show two things. First, that x < y implies x? < y?2,
and secondly, that x* < y? implies x < y.
(i) We begin by assuming that x < y and try to deduce that x* < y?. Multiply
the inequality x < y through by x > 0 (rule III). We obtain

x* < xy.
Similarly
xy < y2.

But now x? < y? follows from rule I.
(ii) We now assume that x* < y? and try and deduce thatx < y. Adding —x?
to both sides of x* < y? (rule II), we obtain

y:—x*>0
i.e. (y —x)(y +x)>0. (1)
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Since x +y >0, (x +y)™' >0 (example 1.5). We can therefore multiply
through inequality (1) by (x + y)™! to obtain
y—x20
LE. X< V.

(Alternatively, we could prove (ii) as follows. Assume that x? < y? but that
x 2 y. From x 2 y it follows (as in (i)) that x? > y?  which is a contradiction.)

1.7 Example Suppose that, forany € >0,a <b + €. Thena <b.

Proof Assume thata >b. Thena —b > 0. But, forany € >0,
a<b + €. Hence a < b + € in the particular case when € =a — b. Thus

a<b+(a—0>b)
and so a <a.

This is a contradiction. Hence our assumption @ > b must be false. Therefore
a<b.
(Note: The symbol € in this example is the Greek letter epsilon. It should be
carefully distinguished from the ‘belongs to’ symbol € and also from the symbol
¢ which is the Greek letter xi.)

1.8 Exercise

(1) If x is any real number, prove that x2 > 0. If0<a<1andb > 1,
prove that

(i)0<a’<a<1 (i) b2 >b > 1.
(2) If b>0and B> 0 and

8 A

b B’

prove that aB < bA. Deduce that
a atA A

— < —_

b b+B B

(3) Ifa>b and ¢ > d, prove that a + ¢ > b + d (i.e. inequalities can be
added). If, also, b > 0 and d > 0, prove that ac > bd (i.e. inequalities
between positive numbers can be multiplied).

(4) Show that each of the following inequalities may fail to hold even

though a > b and ¢ > d.
(iya—e>b—d
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a_ b
AN
(11)C y

(iii) ac > bd.

What happens if we impose the extra condition that 5 > 0 and d > 0?
(5) Suppose that, forany € >0,a —e <b <a + €. Prove that g = b.

(6) Suppose that @ < b. Show that there exists a real number x satisfying
a<x<b.

1.9 Roots

Let n be a natural number. The reader will be familiar with the notation
y =x". For example, x* =x.x and x® = x.x.x.
Our next assumption about the real number system is the following. Given
any y = 0 there is exactly one value of x = 0 such that

n

y = x".

(Later on we shall see how this property may be deduced from the theory of
continuous functions.)

If y 20, the value of x = 0 which satisfies the equation y = x" is called the
nth root of y and is denoted by

x = ylm-

When n = 2, we also use the notation \/y = y'/2. Note that, with this con-
vention, it is always true that v/y = 0. If y > 0, there are, of course, fwo num-

bers whose square is y. The positive one is /v and the negative one is — /.
The notation *+/y means \/y or —\/y’.

It r = m/n is a positive rational number and y > 0, we define
yr . (ym)lf'n.

If r is a negative rational, then —r is a positive rational and hence y " is defined.
If y > 0 we can therefore define y" by

1

_r'

b4

We also write y° = 1. With these conventions it follows that, if y >0, then y"
is defined for all rational numbers r. (The definition of y* when x is an irrational
real number must wait until a later chapter.)

r

y:

1.10 Quadratic equations

If y >0, the equation x* = y has two solutions. We denote the positive
solution by \/y. The negative solution is therefore —+/y. We note again that



