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FOREWORD

This volume presents the Proceedings of the Colloquium on "Complex Analysis,
Microlocal Calculus and Relativistic Ouantum Theory", held at the Centre de Physique

des Houches in September 1979.

This Colloquium originated in the contacts developed during the seventies
between two groups of (French and Japanese) mathematicians and a group of theoretical
physicists who, with different motivations and approaches, were led to related, or
even common, problems in the study of the singularity structure of functions (or
distributions, hyperfunctions, microfunctions,...) of interest either in mathematics,

"in complex analysis and differential and microdifferential calculus, or in physics,
in relativistic quantum theory. These contacts, including in particular previous
meetings organized by F. Pham in Nice in 1973 and by M. Sato and collaborators in
Ryoto in 1976, had proved to be useful. The present Colloquium, which was extended
to related domains of common interest, has allowed the presentation of the important
new developments and the exchanges that had appeared to be desirable or needed. Let
us note, in this connection, that the separation between mathematicians and physi-

.cists is not always very neat: as will appear in these Proceedings, several of them
in both groups have been led recently to contributions in either domain, the dif-
ferences appearing mainly in the emphasis and in the main motivations and character

of the various contributions.

The topics treated have been classified in four parts. The two first parts are
mainly mathematical, while the last two are more oriented towards physics. Some

indications on the connections between various parts are given later.

Part I presents the recent developments of microfunction theory and of the mi-
crolocal, or microdifferential, calculus (holonomic systems, second microlocalization)
and related topics (essential support theory, ...). Other miscellaneous mathematical
developments, on singularities of solutions of partial differential equations, pseu-
dgdifferential operators and generalizations, spectrum of operators, asymptotic

expansions, monodromy, ... will be found in Part TI.

Part III is mainly devoted to the rigorous study of the general analytic and
microanalytic structure of Green functions and of the S-matrix (i.e., of collision
amplitudes), in axiomatic quantum field theory and in S-matrix theory, a domain in
which appreciable progress has been made recently for multiparticle processes.

Recent developments in the related study of Feynman integrals,and a few other topics,

are also included.

Finally, an important part of these Proceedings (Part IV) is devoted to the

explicit determination of the S-matrix and, in some cases, of Green functions for
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various models of field theory in two space-time dimensions, and to related physical
and mathematical developments with emphasis -on those aspects that have, or should
prove to have, a general character and give hopes of further developments. Approaches

based on general principles and applying to theories "with soliton behaviour" are

"first presented (Sect.A). The more direct approach developed recently for quanti-

zation and solution of completely integrable systems is then introduced in Sect.B,
where a general analysis of such systems, in connection with the isospectral defor-
mation, is presented on the other hand. Finally, the recent developments on holo-
nomic quantum fields, in connection with the isomonodromic deformation, and the
corresponding solution of the Ising and other models by Sato-Miwa-Jimbo is presented

in Sect.C. Complements on the Ising model are also included.

While each part has its own unity, we emphasize however that the above division
is to some extent arbitrary, both because the distinction between physics and mathe-
matics is not always very neat and in view of the connections that will appear
between the various parts. For instance, some texts of Part I (Iagolnitzer, Kashi-
wara-Kawai, Van Den Essen) are directly relevant to the study of the S-matrix and
of Feynman integrals. As another example, the study of the general structure of the
S-matrix in Part III gives insight into some aspects of the two~dimensional models
considered in Part IV. (Note, however, that possible extensions of specific aspects
of these models to more dimensions seem to lead to structures that differ from the
usual ones). Finally, a number of connections, not described here in detail, will

appear between various texts of Parts I,II and IV.

The Proceedings include short contributions, which are a summary or am intro-
duction to more complete works published elsewhere, and longer contributions, which
either present original work or are review works (with some original aspects) in
domains in which there was a need for an up-to-date and clear presentation of recent

developments.

On behalf of the Organization Committee, I would like to thank the directors
of the Centre de Physique des Houches, and in particular Mrs. M.T. Beal-Monod, for
their efficient help. I also wish to thank all participants and lecturers who
contributed to the success of this Colloquium, and more particularly here all
lecturers who, by their efforts in the preparation of their manuscripts, will
contribute to the usefulness of these Proceedings. I am finally pleased to thank

Mrs. E. Cotteverte for her efficient help in the final preparation of the manuscript.

D. TAGOLNITZER
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PART I

MICROFUNCTIONS, MICROLOCAL CALCULUS AND RELATED TOPICS

ESSENTIAL SUPPORT THEORY AND u=0 THEOREMS

D. TAGOLNITZER
DPh-T, CEN Saclay, BP n°2, 91190 Gif-sun-Yvette, France : ,;

[1]

The standard results of essential support theory

2]

, or of hyperfunction
theory[ , give no information on the essential support (= singular spectrum)of a
product of distributions f',f" at u=0 points X (i.e. points where the essential sup-
ports of f' and f" contain opposite directions), even when the product itself is
well defined in the neighborhood of X. The same remark applies also to products of
bounded operators, such as the products of collision operators encountered in some
applications in S-matrix theory (see the lecture of the author in Part I1T). The

u=0 problem encountered there is crucial and has been at the origin of several works.
The approach to the u=0 problem developed in the framework of the theory of holono-
mic microfunctions by Kashiwara-Kawai is presented in [3] and references therein.

We present here u=0 results[4] obtained in the framework of essential support theo-
ry, on products of square integrable functions that satisfy a general repgularity
property R at X with respect to the relevant directions of their essemtial support.

[4a]

Analogous results also hold for products of bounded operators. Details in both

cases will be given in [4c].

The basic facts on the essential support are recalled in Sect.l. Property R is
probably linked with the second microlocalization introduced recently in microfunc-
tion theory. It is introduced in Sect.2 at the end of which a simple example is
given in terms of analyticity properties. The announced u=0 theorem is then pre-
sented in Sect.3. As in [3), the result is similar to the standard u#0 one, except
that limiting procedures that may enlarge the essential support have to be intro-
duced. The latter are however different, the respective conditions of application

of the results being themselves different in general. -

1. ESSENTIAL SUPPORT

Being given a tempered distribution f defined on the space']Rn of n real va-
riables L SERRRYE the essential support of f is defined, at each point X, as

a cone with apex at the origin in the space'RP of the dual variables USU ..U

composed of the "singular directions" along which the generalized, or localized,




Fourier transform of f at X does hof fall off exponentially in a well specified

sense. Namaly, let FY be defined, for every y > 0, by
. 2
F (%) = [ f(x) e ¥ vlulGeB” 4 m
or, with an auxiliary real variable v, let

F(u;v,X) = I £(x) e—iu.x-—v(x—X)2 dx . (2)

Then a direction ﬁo is by definition outside ESX(f), or (X,ﬁo) € ES(f) if there
exist a neighbouring cone V(ﬁo) of ﬁo with apex at the origin, a > O,YO > 0, as also

a polynomial P and q > O such that

[Fusv,X)] < [P(Ju]) v 9] ™ (3)

in the region u € V(Go), 0 <wv< YOIUI-

oV z e-ay]ul, which

The important factor in these bounds is the factor e
expresses exponential fall off in the direction ﬁo for all y > 0 sufficiently small
with a rate of fall off at least proportional to Y . (Bounds of the form (3) without
this factor are always satisfied). Whereas the exponential fall-off at y=0, i.e. of
the usual Fourier transform f of f, corresponds to analyticity properties indepen-
dent of the real point X (see e.g. [1]), the above notion of essential support cha-
racterizes by duality the real points where f is analytic or is the boundary value
of an analytic function, and more generally possible decompositions of f into sums
of boundary values of analytic functions from specified directions (which may depend
on X) : see details in [1], where the notion of essential support and the results
above are extended to general distributions defined in R® or on a real analytic
manifold.

[2]

The characterization of analyticity properties obtained in hyperfunction

theory in terms of the notion of sdingular specthum is similar to above, except that
the boundary values involved in the decompositions of f may 3 priori be hyperfunc-
tions, even when f itself is a distribution. It is, however, proved in [5] that the
two notions do coincide for distributions (and coincide with Hormander's "analytic

wave front set').

2. REGULARITY PROPERTY R (for square integrable functions)

The regularity property R is a condition on the way rates of exponential fall
off of the generalized Fourier transform FY tend to zero in certain situations when
directions of the essential support are approached. It asserts more precisely that

certain uniform bounds are then satisfied (see below).

Being given X and ﬁo ¢ ES(f), it follows from results of [1] that o in the
bounds (3) can always be chosen arbitrarily close to
N 2
0 {a';uo ¢ ESX(f) , Vx s.t. (x-X)" <a'}l ,
(with appropriate choices of V(ﬁo) and Yo 2 0).

Max ,
o



-

Let us then consider a direction G that now belongs to the boundary of Esx(f),

and moreover to the boundary of U ESx(f), where N is some real neighborhood
xeN
of X. The above result entails that there exists o > 0 (depending only on N) such

that bounds of the form (3) be satisfied at X with this common uni{foim o for all

directions i outside U ESx(f). The choice of V(d), Yo > 0, ... depends on the
x€EN
other hand on @i, and as a matter of fact Yo(ﬁ) necessarily tends to zero when the

direction ﬁo is approached, since ﬁo € ESX(f). The main content of property R at
(X,ﬁo), when it holds, is the condition that Yo(ﬁ) should not tend to zero faster

than linearly with respect to the angle of { with the boundary of U ESx(f).

x€EN
In order to introduce the precise statement of property R for square integrable
. . . . . . 4a
functions, we mention the following results that always hold in this case. Flrst[ ],

the bracket [P(}u\)v_q] can always be replaced in the bounds (3) by a square inte-
grable function dv of u whose norm is independent of v. This function may & priori
depend on the direction considered outside ESX(f). On the other hand, there always
exists, as easily seen, a uniform square integrable function d of u such that the
bounds IF(u;v,X)[ < d(u), without the exponential fall-off factor e—av’ be satisfied

everywhere, in the whole region v > O.

Property R (for square integrable functions)

"Being given X and a direction ﬁo of B(ESx(f)), property R is by definition satis-—
fied by f at (X,ﬁo) if, being given any real neighborhood N of X, there exist a
neighboring cone U(ﬁo) of ﬁo with apex at the origin, a > 0, x > 0 and a square

integrable function dv of u, whose norm is independent of v, such that :
[F(uv, 00| < da () ™ A

in the region u € lKﬁo), 0 <v<yx dist., {u, U ESx(f)}" .
XEN

Example.

Let f be, in the neighborhood of X, the boundary value of an analytic function
f from the directions of an open (convex) cone I' in Imz-space (where z=x+iy is the
complexified variable of x), in which case ESX(f) < C, where C is the closed dual
cone of I'. The above analyticity property means that there exist a neighborhood N
of X and an open set B with profile I at the origin in y-space, such that f is
analytic in {z=x+iy : x€N, y€B}. B has T as its profile at the origin if, being
given any open cone I'' with apex at the origin whose closure is contained (apart
from the origin) in I, there exists p > O such that F'ﬂ{|y| < p} = B ; p may, however,,

shrink to zero in general when I'' expands to I'.

Let & be a direction of the boundary 3T of I' , if it exists, for which this is
not the case, more precisely for which there exist p(&) > 0 and a neighbouring cone

V(8) of & with apex at the origin such that the set {y;‘y\<p(é),yEV(§)ﬂ8T} belongs



to the closure of B. If, moreover, f is bounded in its analyticity domain when
this set is approached, then property R is satisfied at (X,ﬁo) for any ﬁo of 3aC

such that ﬁo.é=0. The converse is also essentially true.

3. U=0 THEOREM

Theorem - "Let f', f" be square integrable functions such that property R is

satisfied by f' and f" at (X,ﬁo) and (X,—ﬁo) respectively, for any direction ﬁo

~ ] - " .
such that a € ESX(f ), a € ESX(f ). Then :

ESX(f'f") < {u;3 u;l,u;_'l, xr'l, x'r'l, ur'l € ESXI,!(f‘), u; € Esx.r.l(f") ,

X; - X, X; + X, “; + u; + u when n>w} | BH)"
The (easy) proof is based on the formula :
F(u;v,) = [ F'(u'; 2,%) F'(u-u'; -‘ZL,X) du’ (6)

where f=f'f". The result is a generalization of the particular case obtained when

£',f" satisfy the properties of the example of Sect.2 : if I'' N I'" is empty (in which
case X is a u=0 point), but if 3T' N 3T" contains a direction & (or a set of such
! directions) such that the properties described at the end are satisfied by f' and

f", then ESX(f) is contained in its dual half-space (or in their intersection).
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THE THEQRY OF HOLONOMIC SYSTEMS WITH REGULAR SINGULARITIES
AND ITS RELEVANCE TO PHYSICAL PROBLEMS -

Masaki KASHIWARA
Départment de Mathématiques, Université de Paris-Sud
91405, Orsay, France
and !
Research Institute for Mathematical Sciences,
Kyoto University, Kyoto 606, Japan

AND

Takahiro KAWAI
Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606, Japan .

The purpose of this report is to give a partial resume of our
articles [11], [12] and indicate their relevance to physical problems.
So we have tried to make this report easy to understand, especially for
physicists, by sometimes sacrificing the generality of the statement.
We have also concentrated our attention on topics which, we hope,
relate to physical problems. In this report we use the same notations
as in [12].

In the theory of linear ordinary differential equations and its
applications, equations with regular singularities play a central role.
Hence one might naturally wish to extend the theory to several variables
case. Then one natural choice would be to concentrate our attention on
holonomic systems, partly because they share the basic finiteness
theorem with ordinary differential equations ([4], [8]) and partly
because, not general systems, but holonomic systems are particularly
important in applications (e.g. [9], [13]. [15], [20],...).

Now, let M be a holonomic Ex-Module on QcCT*X-T§{X. Let A
be its characteristic variety. (Hence A 1is a Lagrangian variety
possibly with singularities.) For each point p in the non-singular
locus A of A, we can find a suitable contact transformation @

re

which is defined in a neighborhood U of p and brings Areo(\U to
the form T?X N ®(U) for a non-singular hypersurface Y in X. We




—— ————————

i

choose a coordinate system Xx = (xl,...,xn) near n(?(p))(*) so that
Y = {x1 = 0} and ¢(p) = (O;dxlw). Then by definition, M is with
regular singularities along T?X at @(p) if and only if M is
isomorphic to the following 5X-Module N in a neighborhood of @(p):

N o (ij—Aj)U =0 (j=1,...,n),

where U 1is a column vector with N wunknown functions, I is the

identity matrix of size N x N, P, = xlDl, pj = Dj (j=2,...,n) and

A. (j=1,...,n) 1is an N x N matrix of micro-differential operators
which satisfies the following condition:
(1) There exists an integer m such that the order of each component

of each power A? (2 2 0) 1is less than m.

(When a matrix A of micro-differential operators satisfies the
condition (1), A 1is said to be of order at most 0.)

We define the notion of a holonomic 6X-Module with R.S. (= the
abbreviation of regular singularities) by requiring that it is with
regular singularities along A at each point in A A holonomic

reg”’
&DX—Module &L is said to be with R.S. if and only if so is

(Ex ‘gx.t) IT*X—T)’EX'

See [12] Chap. I and Chap. V for more intrinsic definition of
systems with R.S. and results which show the naturality of the above
definition.

An important class of holonomic Jéx-Modules is that of the D-type
equations. A D-type equation corresponds to the sheaf of meromorphic
sections of a regular integrable connection in the sense of Deligne [2],
namely, the sheaf of Nilsson class functions. In terms of (@X—Modules,
it is characterized as follows:

Definition 1. A holonomic ADX—Module L is said to be of D-type
(=Deligne type) with singularities along a hypersurface Y = f-l(O),
if and only if it satisfies the following three conditions:

2) sseH)*¥ e 7l U Tgx

(3) &£ 1is with regular singularities along T§ X.

(4 £f: & — &£ is bijective. reg

(%) Here and in what follows, 7 denotes the canonical projection
from T*X to X.

(x%) SS(#£ ) denotes the characteristic variety of the é@X-Module



Remark 1. Since there may be some irreducible components other than
T?X in SS(¥), the condition (3) does not imply immediately that Z
is with R.S. The proof for this fact requires (at least, at present)
the use of AD”, the sheaf of linear differential operators of infinite

order. ([12] Chap. V, Theorem 5.2.3.)

Example 1. Let f be a holomorphic function defined on X. Suppose
that f is not identically zero on any connected components of X.
Then, for generic a, Q&fa is a holonomic system of D-type. ([11]
Remark 1.2. The precise condition which guarantees o to be generic

is also given there.)

Example 2. Let f be the same as in Example 1. Denote f-l(O) by Y.
Let M be a holonomic <@X—Module which is with regular singularities

along T? X at each point x in Yreg' Then the localization
reg

14§*) of M along Y is a holonomic system of D-type along Y.
(f12] Chap. II, 8§83, Proposition 2.3.4.)

The importance of the D-type equation lies in the fact that it is
"generic'" in the sense of Theorem 1 below.

Definition 2. A Lagrangian variety A in T*X-T§X is said to be in
a generic position at p in A if and only if Arﬂn'l(n(p)) = Exp
holds in a neighborhood of p.

Theorem 1. Let. M be a holonomic EX-Module defined in a neighbor-
hood of p in T*X-T}X. Suppose that & s Supp M is in a generic
position at p in A . Then there exist a holonomic system & of
D-type along w(A), a holonomic £ -sub-Module P of & with
SS(9?) C T;X(**) and an injective éax’n(p)—linear homomorphism
¢t )4p — (dS/jD)ﬂ(p).

If, in addition, any order of any sections of M is not an half

integer, then we do not need to divide & by a sub-Module jD , namely,
M can be imbedded into &

P m(p)”
(%) Here J4f is equal to Qﬁ’f-jﬂ4, and it is known to be
j=0

holonomic. ([5], Theorem 3.1.)

(%) Hence P is isomorphic to G}§ for some integer r.



Remark 2. The assumption that A 1is in a generic position at p is
not too restrictive, because a suitable contact transformation brings

A to this form.

In the course of the proof of Theorem 1, we also obtain the follow-

ing

Theorem 2. Assume the same conditions on M and A as in Theorem 1.
Then ﬁ4p is a finitely generated Q& ﬂ(p)—Module. Furthermore we
have ’

Mp if p' =p

X, m(p) 0 if p' is in ﬂ'ln(p)—Tix-Exp.

This theorem is-useful in investigating the analytic structure of
Feynman amplitudes at cuspidal points of Landau-Nakanishi surfaces, which

are far from the physical region. (Cf. [13] §3.)

Remark 3. As a matter of fact, a much more striking result is proved

in [12] (Chap. IV, Theorem 4.1.1): Theorem 1 holds for an arbitrary
holonomic 8X-Modu1e if we use micro-differential operators of infinite
ordef, namely, there exist a holonomic system & of D-type, its

& -sub-Module P with SS(P) € T#X and a ’@;.ﬂ(p)-linear homo -
morphism

o: (6 8 M), — DY & (L/P)
P X
éix gDX
such that the associated homomorphism

m(p)

3 = 189 (85 2 My, = &5, 9% (LIP)Y

def X 7 (p)

is an injective &7 -linear homomorphism.

In fact, this imbedding theorem is the most important result in
[12]. Most of the main results of [12] follow from this. So, here we
will sketch some basic ideas of the proof. We like to mention that
the method used in [9] to discuss the hierarchical principle for Feynman
amplitudes is one of the essential ingredients of our proof.

We first introduce a vector space C, which is an analogue of the
space of germs of microfunctions. It is the space of holomorphic




functions defined on a cone with its apex at the origin, modulo the
space of holomorphic functions defined on a neighborhood of the origin.
(See (4.5.1) of [12] Chap. IV, §5 for the rigorous definition.) This
space is introduced to make clear the action of micro-differential
operators on holomorphic functions. (Cf. [6], [1] and [9].) We can
then prove that V =}km1&w(A4;, C) 1is finite-dimensional and that

P

Ad; is imbedded into Homp(V,C). Let {Sj}?=l be a system of genera-

tors of ﬁ4, let {¢v}§=l be a base of V and let 93 N be a
b

holomorphic function whose modulo class in C is ¢v(sj)' Then we can
prove that Qg’v can be extended to a multi-valued holomorphic
functions on X-w(A). Furthermore, thus extended functions are with
finite determination. Since nw(A) is a hypersurface, we can choose a
holomorphic function f on X such that m(A) = f—l(O). In this case,
the following result is proved by Deligne [2].

Let ¢ denote one of ?-’V. Then there exists Nilsson class
funffions wk and single—vglued holomorphic fucntion ay defined on
X-f “(0) such that ¢ = kzlakwk holds.

Using this result we can obtain a much sharper result to the effect
that & has the form ) kak with linear differential operators
k=1

Qk (of course, possibly with infinite order). See [12] Chap. II, §2
Theorem 2.2.4 for the precise statement and the proof. Here, instead of
repeating the proof, we present a heuristic, but instructive argument
which, we hope, convince the reader that there must exist such an
operator Qk'

We know ([5], Theorem 2.7) that there exists a non-zero polynomial
b(s) which satisfies

() b(s)ES &) = P(s,x,0 ) (£5% ¢ )

for some P(s) = P(s,x,Dx) in &)X[s], i.e., for some linear differ-
def

ential operator which is a polynomial in s. Then, a superficial
application of (5) would entail

(6) £P ¢ = BLpL---P(1)

)
p
I b(-s)

s=1

Since a; is single-valued on X-f-l(O), it has the form




