


Random Walks and Their
Applications in the
Physical and Biological Sciences

(NBS/La Jolla Institute-1982)



AIP Conference Proceedings
Series Editor: Hugh C. Wolfe
Number 109

Random Walks and Their
Applications in the
Physical and Biological Sciences

(NBS/La Jolla Institute-1982)

Edited by

Michael F. Shlesinger
La Jolla Institute and
Institute for Physical Science and Technology
University of Maryland

and

Bruce J. West
La Jolla Institute
Center for Studies of Nonlinear Dynamics

American Institute of Physics

New York 1984



Copying fees: The code at the bottom of the first page
of each article in this volume gives the fee for each
copy of the article made beyond the free copying
permitted under the 1978 US Copyright Law. (See also
the statement following “Copyright” below.) This fee
can be paid to the American Institute of Physics
through the Copyright Clearance Center, Inc., Box
765, Schenectady, N.Y. 12301.

Copyright © 1984 American Institute of Physics

Individual readers of this volume and non-profit
libraries, acting for them, are permitted to make fair
use of the material in it, such as copying an article for
use in teaching or research. Permission is granted to
quote from this volume in scientific work with the
customary acknowledgment of the source. To reprint a
figure, table or other excerpt requires the consent of
one of the original authors and notification to AIP.
Republication or systematic or multiple reproduction
of any material in this volume is permitted only under
license from AIP. Address inquiries to Series Editor,
AIP Conference Proceedings, AIP, 335 E. 45th St.,
New York, N. Y. 10017.

L.C. Catalog Card No. 84-70208
ISBN 0-88318-308-0
DOE CONF- 8206109



DEDICATION

These proceedings are dedicated by his friends and
colleagues to the memory of

ELLIOTT W. MONTROLL (1916-1983)



vi

Photo courtesy of John Ward

ELLIOTT WATERS MONTROLL
(1916 - 1983)



vii

FLLIOTT W. MONTROLL (1916-1983)
(In Memoriam)

Elliott Waters Montroll distinguished himself in many fields of science and
mathematics while working in high-level positions at universities, the federal
government, and in private industry.. Some of his most outstanding achieve-
ments and most eloguent publications have been in the field of random walks,
the topic of this proceedings which we dedicaté Lo his memory. This work is
briefly summarized below.

His article in this volume traces the influence of the Vienna School of Sta-
tistical Physics from Boltzmann to present day physicists, and includes the per-
sonage of Smoluchowski, a co-inventor of diffusion which is a form of a random
walk. This complements a larger work of Montroll and Shlesinger [("On the
Wonderful World of Random Walks," in Studies in Statistical Mechanics, Vol. 11,
North-Holland Publishers (1984), in press] which reviews the history of random
walks.

His first random walk encounter occurred while he was Head of the
Mathematics Group of the Kellex Corporation (1943-1948). His task, connected
to the Manhattan Project, was to design a stable control system for the cascade
separation of two uranium isotopes at the Oak Ridge gaseous diffusion plant. His
endeavor was highly successful. Part of the analysis involved the behavior of a
third species which he found to obey a discrete space random walk (the state
space being the levels in the cascade). The project was classified so he could not
publish his result as such, but its mathematical version did appear as "A Note
on Bessel Functions of Purely Imaginary Argument” in J. Math. and Physics, Vol
XXV No. 1, 37-48 (1946). He discovered that the generating function for a lattice
random walk satisfies a Green's function equation which, in turn, also represents
a lattice vibration problem. His pioneering work on lattice dynamics was pub-
lished in the now classic book "Lattice Dynamics in the Harmonic Approxima-
tion" Academic Press (1963) with A.A. Maradudin and G.H. Weiss. Montroll's
independent discovery of the random walk Feynman-Kac path integrals for quan-
tum and classical mechanics can be found in the article "Markoff Chains, Wiener
Integrals, and Quantum Theory" in Comm. in Pure and Applied Math. Vol. V, No.
4, 415-453 (1952).

Montroll and K. Shuler in "The Application of the Theory of Stochastic
Processes to Chemical Kinetics” [(Adv. in Chem. Phys. Vol. 1, Interscience Pub.
(1958)] discussed the shock induced dissociation of a diatomic gas as a random
walk up and down a ladder of quantum mechanical energy levels. Dissociation
occurs with the first passage to the uppermost level. The exact solution was
obtained in terms of the little known Gottlieb polynomials.

Montroll's most quoted random walk paper is "Random Walk on Lattices 11"
with G.H. Weiss in J. Math. Physics 8, 167 (1965). Here the generating function
(Green's function) method is extended to include continuous-time processes. If
the mean time between events is infinite the master equation approach to this
problem fails, but E. Montroll, N. Kenkre, and M. Shlesinger in J. Statistical Phy-
sics, 9, 45-50 (1973), showed that the random walk is equivalent to a generalized
master equation.

These random walks with infinite temporal moments for the time interval
between events provided the first successful explanation of charge transport in
amorphous material such as xerographic films (see "Anomalous Transit-Time
Dispersion in Amorphous Solids" by H. Scher and E.W. Montroll, Phys. Fev., B12,
2455-2477 (1975). This analysis was later extended by E. Montroll and M. Shles-
inger in "On the Williams-Watts Function of Dielectric Relaxation” Proc. Nat.



viii

Acad. Sci. (USA) 1984 (in press) to model electric dipole relaxation in amor-
phous materials as a random walk controlled reaction process with relaxation
occurring when a defect (e.g. a vacancy) reach a frozen dipole.

Two recent reviews of Montroll's random walk work are "An Enriched Collec-
tion of Stochastic Processes” by E.W. Montroll and B.J. West in "Studies in Sta-
tistical Mechanics, Fluctuation Phenomena, Chap. 2, (1979) and the earlier men-
tioned volume 11 of this series which besides the history of random walks
includes work on fractal (self-similar) random walk paths.

Montroll was a Distinguished Professor at the Institute for Physical Science
and Technology of the University of Maryland and a member of the National
Academy of Science. He was an original in whose path many have followed. The
impact of his work is apparent in the growth of random walk research evidenced
by the international conference "Random Walks and Their Applications in the
Physical and Biological Sciences."” As with Lord Rayleigh whom he greatly
admired, Montroll wrote his last papers on the topic of random walks.

Michael F. Shlesinger
Bruce J. West
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PREFACE

In the past decade there has been an explosive growth in the theory and
applications of random walks. The need for a meeting to bring together the
leaders who have contributed to this surging growth was evident, and accord-
ingly the conference "Random Walks and Their Applications in the Physical and
Biological Sciences" was organized. It was held at the National Bureau of Stan-
dards from June 29 to July 1, 1982. The sponsors were:

National Bureau of Standards

National Institutes of Health

Exxon Research and Engineering Company
Xerox Webster Research Center

La Jolla Institute

Institute for Physical Sciences and Technology
of the University of Maryland

The Organizing Committee consisted of:

Robert Jernigan (NIH)

Joseph Klafter (Exxon)

Elliott W. Montroll (IPST, U. of Maryland)

Robert J. Rubin (NBS)

Harvey Scher (Xerox)

Michael F. Shlesinger (La Jolla Institute /IPST, U. of Maryland)
George H. Weiss (NIH)

Bruce J. West (La Jolla Institute)

The program of lectures is presented subsequently.

The study of fluctuations can lead to very powerful results and insights.
Finstein's 1905 treatment of Brownian motion convinced reasonable minds of
the existence of molecules and atoms by allowing Avogadro’'s number to be cal-
culated from the second moment of a probability distribution.! While Einstein’s
physical interpretation of his Brownian motion was novel, much of the
mathematics, unbeknownst to him, had been developed in 1900 by Bachelier™ in
a doctoral thesis (Poincaré headed Bachelier's thesis examination committee)
devoted to price fluctuations in the stock market. Both men were studying a
random walk process, the subject of this book. In the same period Smolu-
chowski, whose origins were in Vienna, was making important contributions to
the theory of Brownian motion. The history of the Vienna school of statistical
mechanics is reviewed here in an article by MONTROLL.

The first explicit mention of the words "random walk" appear in a 1905
query to the scientific community published in Nature by the great statistician
Karl Pearson®.



"A man starts from a point 0 and walks ! yards in a straight line: he
then turns through any angle whatever and walks another ! yards in a
second straight line. He repeats this process n times. [ require the
probability that after these n stretches, he is at a distance between r
and r+ ér from his starting point 0. The problem is one of consider-
able interest, but 1 have only succeeded in obtaining an integrated
solution for two stretches. I think, however, that a solution ought to be
found, if only in the form of a series in powers of 1/n, where n is large."”

Today this is called a Pearson or a Rayleigh-Pearson random walk because
as Rayleigh pointed out in a reply to Pearson in Nature that he had solved this
problem previously. Rayleigh4 responded:

"The problem proposed by Prof. Karl Pearson in the current number of
Nature, is the same as that of the composition of n isoperiodic vibra-
tions of unit amplitude and of phases distributed at random, con-
sidered in Philosophical Magazine X, p. 73, 1880; XLVII, p.246, 1889. If n
be very great, the probability sought is

2n lexp(—r?/n) rdr .

Probably methods similar to those employed in the papers referred to
would avail for the development of an approximate expression applica-
ble when n is only moderately great.”

KIEFFER and WEISS treat further developments in the analysis and applica-
tion of the Rayleigh-Pearson random walk. They discuss applications and develop
approximations for the probability density function for end-to-end distances and
projections on an axis. In 1934, Kuhn® characterized polymer chain
configurations in terms of these random walks, but this neglects volume exclu-
sion effects. Modern techniques using a real space renormalization group to
study polymer statistics is presented here by FAMILY. An analogy is made
between critical phenomena when T -» TC and polymer statistics as the number
of monomers N » . Family categorizes the universality of polymer models and
analyzes the crossover behavior between them. RUBIN reviews and further
advances the investigation of the absorption of an isolated polymer chain at a
solution surface. Each random polymer configuration corresponds to a self-
avoiding random walk on a lattice. The random walk paths can be weighted to
favor sticking to the solution surface. A critical weighting is found which leads
to an absorption -desorption transition. A comparison is made to a similar
model involving polymer configurations near a reflecting surface.

Of course, random walks by other names, go back far beyond Pearson, at
least to Jacob Bernoulli's posthumously published treatise of 1713 Ars Conjec-
tandi.” He described what is now called a Bernoulli process: In a sequence of
independent trials, success occurs with probability p and failure with probability
q=1-p. The number of successes fluctuates in an manner equivalent to a random
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walker on a lattice with probabilities p and q for moving forward or backward.
Bernoulli's gambler's ruin problem is equivalent to a random walk on a lattice
between two absorbing boundaries. This work was a generalization of Huygen's
investigations of gaming odds in his 1657 treatise De Katiociniis in [udo Aleae7,
which in turn was motivated by the Pascal-Fermat correspondence of 1654 on
games of chance. Bernoulli calculated the probability of m successes 7, in n
trials to be

|
Pn = ———mp™ g™ ™ (1)

De Moivre8 in his The Doctrine of Chances of 173b showed that eq. (1) tends to a
Gaussian distribution centered around n/2 when p=q. This is 76 years before
Gauss' publication of the Central Limit Theorem which applies to this and also
more general cases.

That the study of random walks does not end with Gaussian prebability dis-
tributions was realized early on as exemplified by Daniel Bernoulli's 1731 discus-
sion of the Petersburg Paradox (apparently receiving this nomenclature because
it was published in the Comentarii of Petersburg Academyg). The Paradox
involved calculating the "fair” entrance fee for playing a particular Bernoulli
process: Flip a coin, if a head appears, win one penny, if a tail appears, flip the
coin again. Repeat the process until a head appears. If a head appears for the
first time on the nth trial, win 27 pennies. The probability p, of winning pht-l
pennies is 27, thus the expected winning is

), 2 ip, = @ . (®)

1

n

Now suppose you want to play this game against a bank with an infinite reserve
of money, how much money would you stake just because your expected winning
is infinite? You would hesitate to wager a large amount because your median
winning is only one penny. Thus, the paradox is should your intuition follow the
mean or the medium? It is fascinating that such questions come into play again
in recent times concerning the random walk of charges in highly disordered
environments such as xerographic films. Currents can be generated in the pres-
ence of an electric field because the median time for a charge to jump is finite,
but because the mean time between jumps is infinite the currents are only
transient.

The general theory of the limiting forms of probability distributions which
are not Gaussian was discovered by Paul Lévy10 and was called by him the
theory of stable distributions. These are distributions for a sum of identically
distributed random variables where the sum and any one of its terms have the
same distribution except for scale factors. The Cauchy distribution is one such
example. All of these distributions have their second or a lower (possibly non-
integer) moment being infinite. They thus have long tails, no characteristic size
in which to gauge measurements, and describe self-similar behavior. Random
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walks in the continuum with jump length distributions of the Lévy type (infinite
second moments) are called Lévy flights. Their trajectory has a fractal dimen-
sion in the sense of Mandelbrot™ (Lévy's protegé). HIOE'S article relates corre-
lation functions for Lévy flights on a lattice to spin correlation functions for the
spherical model of ferromagnetism with long-range interactions.

The most famous paper on lattice random walks is Polya's11 proving that a
random walker taking nearest neighbor jumps on a periodic, infinite cubic type
lattice will only return to its starting point in two or less dimensions. The pre-
cise probability for not returning on various three dimensional lattices was first
calculated by Montroll. 12 Starting in the 1940's Montroll has contributed much
original work and many clear expositions to the theory of random walks. His
Green's function and generating function techniques have made random walk
theory accessible to the physics community. Many lecturers at this conference
can trace their random walk roots back to Montroll. His classic 1965 work with
George Weiss on continuous-time random walks!3 (CTRW) has been the corner-
stone for many theories of transport in condensed matter. Lindenberg, Hem-
inger, and Pearlstein 4 treated exciton transport in molecular solids as a ran-
dom walk with randomly placed traps, using Montroll's techniques. In addition,
they accounted for the possible trap configurations via the coherent potential
approximation. The article by WEST and LINDENBERG treats exciton migration
at finite temperatures. Previous theories were essentially infinite temperature
models. West and Lindenberg add the proper dissipation term to their Hamil-
tonian equation of motion so the system can reach thermal equilibrium. This
allows them to calculate, for the first time, the temperature dependence of
quantities such as exciton lineshapes.

The growth in the interest in random walks has in part been due to the cal-
culations of P.W. Anderson!® showing that electronic wave functions can be
localized in a sufficiently random environment. In this spirit, using the
Montroll-Weiss walk to calculate a quantum-mechanical probability Scher and
Lan(16 in 1973 analyzed the frequency dependent conductivity of impurity con-
duction of doped semiconductors. The article by LAX and ODAGAKI continues
this field of research by treating more accurately the random walk in a random
media. The multiple scattering theory of Lax is used to derive a coherent
medium approximation for the hopping of charges in a random media. Dynamic
percolation is automatically included in the calculation.

SCHER and RACKOVSKY'S article extends the earlier random walk tran-
sport model to geminate recombination of charge pairs. The Colomb field of the
charges as well as the effect of an external electric field are taken into account.
The random walk Green's function approach includes defective sites and allows
the effects of dimensionality, disorder, tunneling, and intramolecular transitions
to be analyzed exactly.

Scher and Montroll!” were the first to treat the transient currents in xero-
graphic films as a random walk process governed by a waiting time distribution
between jumps which has an infinite mean. The connection of these processes to
fractal times, Lévy distributions and renormalization groups has been explored
by Shlesinger and Hughes.1 Reaction schemes governed by this fractal time
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process for electron-hole recombination in an inhomogeneous environment is
the subject of the article by KLAFTER and BLUMEN.

Random walks need not take place in a real positional space and the transi-
tions need not represent actual physical jumps. Many problems can be mapped
exactly onto a random walk problem, although the appropriate random walk
may be semi-Markovian, non-Markovian, involve internal states, memories, a
high number of dimensions, a defective lattice, difficult boundary conditions, or
other complications. For example SAHIMI, in his article is able to treat flow
paths through a random network as a continuous-time random walk. Percola-
tion effects are also included, with information about the structure of the perco-
lation backbone being derived from the dispersion of the flow.

While there has been much attention paid to the behavior of a single parti-
cle in a random potential, a more difficult question involves the dynamics of a
fluid in a random potential. MUKAMEL, in his article, addresses this issue and
calculates the conductivity and density function response of the fluid as these
are experimentally observable quantities.

In the last article CLAY and SHLESINGER describe the passage of potassium
ions through a channel in a neural membrane in terms of a random walk model
whose internal states represent the contents of the channel. The kinetics of
gates which can block the current are included in the analysis. Modifications of
the Hodgkin-Huxley equations for the gating process are proposed. The model
leads to exact results which can be used to analyze flux experiments.

We wish the reader much enjoyment with this volume. For those who find
random walks irresistible we suggest the following reviews:

1. M. Barber and B. Ninham, Random and Restricted Fandom Walks (Gordon
and Breach Pub. NY) 1970. This is a fairly complete review of the already
extensive random walk literature up to 1970.

2. M.F. Shlesinger and V. Landman, in Applied Stochastic Processes, G.
Adomian ed. (Academic Press, NY ) 1980, p. 151-246. Treats many problems
which can be cast as random walks with internal states.

3.  E.W. Montroll and B.J. West, in Studies in Statistical Mechanics, VII, Fluctua-
tion Phenomena eds. J.L. Lebowitz and E.W. Montroll, (North-Holland Pub.)
1979, p. 61-175. Good review of continuous-time random walks, boundary
and defect problems, Lévy distributions, first passage time distributions,
and nonlinear diffusion processes.

4.  G.H. Weiss and R.J. Rubin, in Advances in Chemical Physics, 52, eds. 1. Prigo-
gine and S.A. Rice (John Wiley & Sons Inc., N.Y.) 1983, p 363-505. A good
recent review of general theory and applications to polymer physics, multi-
state random walks, solid state physics, and motion of micro-organisms.
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15.
16.
17.
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E.W. Montroll and M.F. Shlesinger, in CCNY Physics Symposium in Celebra-
tion of Melvin Lax's 60th Birthday, H. Falk ed., (CCNY Physics Dept., NY)
1983, p. 44-147 and E.W. Montroll and M.F". Shlesinger in Studies in Statisti-
cal, 11, Nonequilibrium FPhenomena 11 eds. J.L.. Lebowilz and E.W. Montroll,
(North Holland Pub) (in press). The emphasis is on the history of probabil-
ity theory and the theory and applications of fractal random walks.

Journal of Statistical Physics 30 No. 2 (1983). Eds. G.H. Weiss .and R.J.
Rubin. Contains twenty-nine papers presented at the Random Walks in the
Physical and Biological Sciences conference. Full of good research prob-
lems.
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