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PREFACE

The Second Edmonton Conference on Approximation Theory was held in
Edmonton, Alberta, June 7-11, 1982. The Conference was devoted to
Approximation Theory and related topics, including spline approximation,
computational problems, complex and rational approximation, and techniques
from harmonic analysis and the theory of interpolation of operators. 1In
conformity with the requirements of this series, this volume consists of

refereed papers by some of the invited speakers.
The participants of the conference were:

J.A.H. Alkemade, W.A. Al-Salam, B.M. Baishanski, K. Bartke, R.K. Beatson,
H. Becker, C. Bennett, R. Bojanic, S.S. Bonan, D. Borwein, P.B. Borwein,

D. Boyd, P.L. Butzer, J.S. Byrnes, B.A. Chalmers, B.L. Chalmers, W. Cheney,
C. Chui, 7. Ciesielski, C. Coatmelec, F. Deutsch, R. DeVore, Z. Ditzian,

C. Dunham, N. Dyn, P. Frdos, J.J.F. Fournier, C. Frappier, W.H.J. Fuchs,

A. Giroux, M. Goldstein, H.H. Gonska, T.N.T. Goodman, W. Haussmann,

A. Jakimovski, R.N. Kesarwani, D. Khavinson, P.E. Koch, J. Korevaar,

A.T. Lau, L. Leindler, D. Leviatan, G.G. Lorentz, W.A.J. Luxemburg,

M.T. McGregor, J. Mach, M.J. Marsden, A. Meir, H.N. Mhaskar, C. Micchelli,
R.J. Nessel, P. Nevai, D.J. Newman, T. Nishishiraho, D.V. Pai, J. Peetre,
G. Phillips, Q.I. Rahman, S.D. Riemenschneider, E.R. Saff, R.B. Saxena,
H.J. Schmid, I.J. Schoenberg, C.F. Schubert, L.L. Schumaker, A. Sharma,
R.C. Sharpley, B. Shawyer, B. Shekhtman, Y.G. Shi, 0. Shisha, P.C. Sikkema,
S.P. Singh, R.D. Small, P.W. Smith, H.M. Srivastava, R.J. Stroeker,

F. Stenger, J. Szabados, B. Thorpe, J.L. Ullman, R.S. Varga, A.K. Varma,

R. Vermes, P. Vértesi, H. Wallin, K. Wiggins, C. Wlodarski, D. Wulbert.

Sponsored by the Canadian Mathematical Society, the Conference was
supported by grants from the Natural Sciences and FEngineering Research

Council of Canada and the University of Alberta. We wish to express our

vii
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graditude for the financial support of the ahbove mentioned institutions;
also, we wish to thank the conference secretary Mrs. Donna Pawluk, and Mrs.

Christine Fischer for her patient work in preparing the camera-ready copy for

this volume.

Z. Ditzian
A. Meir
S. Riemenschneider

A. Sharma
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Canadian Mathematical Society
Conference Proceedings
Volume 3 (1983)

BEST n—-NETS IN NORMED SPACES

Dan Amir and Jaroslav Mach

ABSTRACT. We show that a sufficient condition of

Keener is not necessary for the existence of best n-nets
for bounded sets, n > 1. Furthermore, it is shown that
for any n > 1, C(S), S infinite compact metric, contains
a bounded set without a best n-—net.

In 1964, Garkavi [2] introduced the concepts of Chebyshev center, best
n-net and best n—-dimensional cross-section. He used compactness and contrac-
tion arguments to prove their existence. These arguments apply to most clas-
sical spaces except, unfortunately, the spaces of continuous functions C(Q).
Kadec and Zamyatin [6] proved that any bounded set in C(Q) has a Chebyshev
center. Brown [5] proved that even compact sets in C(R) do not need to have
a best n-dimensional cross-section. The question whether any bounded set in

C(2) has a best n-net for n > 1 has remained open. It was proved in [1]
that the answer to this question is positive for compact sets. We show here
that in general the answer is negative (Theorem 2). Keener [3] gave a suffi-
cient condition for the existence of best n-nets in normed spaces. Since
this condition is also necessary for n = 1 (the Chebyshev center case) he
asked whether this is true for n > 1. We show here that this is not the
case (Theorem 1).

Let X be a normed space, A a bounded subset of X, n ¢ N. A set
[yl,...,yn} of n points in X is called a best nnet of A if
there is a number 1t > O such that A 1is in the union of n closed balls
with centers in LATRRETS and radius r, and there is no collection of n
closed balls whose common radius is less than r and whose union contains A.

The problem of finding a best n—-net (n>l) seems to be considerably more
difficult than that of the Chebyshev center case, even in the Euclidean case
(e.g. the well known problem of distributing most efficiently n points on

the sphere). The troubling features of the n-net problem can be exhibited in

1980 Mathematics Subject Classification. 41A65, 46E1lS

©1983 American Mathematical Society
0731-1036,/83 $1.00 + $.25 per page



2 D. AMIR AND J. MACH

the simplest 2-dimensfonal example. The best 2-nets for the equilateral

x+y x+z x+z

triangle {x,y,z} are {—5—,w}, {—7—3u}, [—7—-,v}, where d(x,u), d(y,v),

d(z,w) 5_%d(x,y). But a small change of the point x so that
x+z ytz
{ 5 ’[ 2 )yl}'

This shows the instability and discontinuity of the best 2-net operator.

d(x,y) > d(x,z) = d(y,z) reduces the best 2-net set to

This is why, when compactaness or contraction arguments do not work, the
existence of a best 2-net is not easy to estabhlish.

From the classical spaces, this leaves open the problem whether best
n—nets (n>l) must exist for bounded sets in C(Q)-spaces. Garkavi [2] proved
the existence in Che His proof is easily modified to yield:

PROPOSITION. For every T, every bounded A C zw(r) has best n-nets in

cO(T) for all ne N .

PROOF. Let T be the relative n-net radius of A in cO(Y) (i.e.,
the number inf SqurAd(x'Y)’ where the infimum is taken over all
_ N m _ m m m
Y = {yl""’yn} C:CO({))' Let Y = {yl,...;yn}, ¥y € cn(T), satisfy
supxeAd(x,Ym) < r o Since Fn = Umspt Y is countable, and since
|a(Y)| S_rnfor every a ¢ A and Y { Tq, it suffices to take a hest n-net

for AlF in cO(FO) and extend it by zeros on T - Fn. Thus the problem

0
is reduced to relative best n-nets in S for bounded sets in 2 . But the
fact that A C c, plays no role in Garkavi's proof. []

0
Keener [3] defined, for a bounded A C E, the A(n)-t opo lo gy of

E as the one in which the closed balls {B(x,r), x ¢ A, r > rn(A)} (where
rn(A) is the n-net radius of A) is a subbasis for the closed sets, and
called E an M(n)-s pace if (E,A(n)) is compact for every bounded

A C E. He showed that if E {is an M(n)-space then every bounded subset of
E has a best n-net, and that for n =1 the converse is also true. There-
fore he asked whether the converse holds also for n > 1.

Keener observed that dual spaces are M(n) (since every A(n) is weaker
than the w*-topology). It is also immediate to check that if F 1is an
M(n)-space and E 1is the range of a contractive projection from F, then F
is an M(n)-space, too. Xeener showed that h is M(n) for every n.
(His proof, however, uses the existence of a best n-net, so that it does not
supply an alternative to Garkavi's result.) The following example shows that

the answer to Keener's question is negative.

THEOREM 1. There exists a Banach space E in which every bounded set
has a best n-net for every n ¢ N, yet the A(n) topologies are not com-

pact for all n > 2 for some bounded A C E.
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PROOF. Let T be an uncountable set, m(I') the space of bounded
functions on I equipped with the sup norm, E = {x ¢ m(l); x 1is constant
except on a countable subset Fx of T}. E is a closgd subs?ace of m(l),
hence a Banach space. TIf A C m(I') 1is bounded, let xf,...,xi cE, je N ,
be such that

j j 13
sup d(x,{xl,...,xn}) S_rn(A) + 3

XEA

where rn(A) is the relative n-net radius of A with respect to E. Let
o n

FO = }J U T 3 (which is countable), F = {x € E; x 1is constant off FO}.
j=1 i=1 Xy

Clearly F = m(FO*), hence F has best n-nets for bounded sets in m(Tl) and

rn(A) = rn(A) (where rn(A) is the relative n-net radius with respect to F)

is attained. On the other hand, let T = Fl U F2, Fi disjoint uncountable.

Consider A = {1 + 2X ; A, C T, countable}U {-1 - 2X , A, C T, count-

1 1 2 2
! )
able}. Clearly, {-2,2} 1is a best 2-net for A with radius 1. But the

balls B(x,2), x ¢ A, have nonempty finite intersections, while M B(z,2)
ze A
is empty in E. [J

REMARK. Since the A(n+l) topology is stronger than the A(n) topol-
ogy, C(Q) is not M(n) for any n > 1, unless Q 1is extremally disconnected
(in which case the existence of best n-nets is guaranteed since C(Q) admits

a projection of norm one from some C(BD) = ll(D)*).

THEOREM 2. 1If some w ¢ 2, @ compact Hausdorff, is an accumulation
point of two disjoint sequences (sn) and (tn), then there is a bounded

sequence A in C(2) with no best 2-net.

PROOF. We may pass to subsequences and assume that (sn) U (tn) is a
relatively discrete set, and find disjointly supported U r y s o hn
functions (un), (vn) satisfying O E_un S_un(sn) =1,
0<v <v (t)=1. Let

— n— n n
n+3

= n2 gn -
n’ hn 1+ n+1l Li=1(ui+vt)

2n+4

=4 + 4 — v
g T n+l n’

n

A= {-2}U {gn; n e N} U (hn; n ¢ N} .

Let km =3 - Ym= v,. Then th —ka equals 3 if n > m or equals 2 if
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n < m, and "hnﬂ S-"hm+1" = (2m+6)/(m+2) for n > m, hence
suprAd(x,{O,km}) = (2m+6)/(m+2) » 2. However, if we had x,y ¢ C(Q2) with
supXEAd(x,{x,y}) = 2, we might assume x < 0 (to get -2), but then we must
have ly - gnu <1 and |y - hnn < 1. 1In particular, since gn(sn) =5 and
hn(tn) = 0, we must have both y(w) 2_3 and y(w) < 2 which is impossible.[!
In particular, the spaces C(Q) do not admit best n-nets for bounded

sets in each of the following cases:

(i) Q@ 1is compact metric.

(ii) Q@ 1is a infinite ordinal.

(iii) Q@ = D*, the one point compactification of a discrete infinite D.

REMARK. Keener notes that o is not compact in the topology generated

by the complements of all closed balls, and says that "it is apparently un-
known if there are non-conjugate spaces with this property” -- however, by a

result of Lindenstrauss [4], this property is shared by all spaces E admit-

ting a projection of norm one from E**, e.g. Ll(U) spaces and P1 spaces

(which need not be dual spaces).
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ESTIMATES FOR THE RATE OF APPROXIMATION OF FUNCTIONS OF BOUNDED
VARIATION BY HERMITE-FEJER POLYNOMIALS
R.Bojanic and F.H. Cheng

1. INTRODUCTION. Let f be a real-valued function defined on [-1,1].

The polynomial H (f,x) of Hermite—Fejér interpolation based on the zeros

X = cos(2;;1 n], k = 1,...,n, of the Chebyshev polynomial

Tn(x) = cos(n arccos x) is defined by

Tn(x) 2
f(xkr\)<1-xxkn)(n(x--xkn))

(1.1) Hn(f,x) = .

[N =]

1

It was proved by L. Fejér [1] that Hn(f,x) converges to f(x) uniformly on
[-1,1] whenever f 1is a continuous function on [-1,1]. Since then, this
subject has been studied extensively and various quantitative versions of
Fejeér's result are known (see [2]-[9]).

In this paper we shall study the behavior of Hermite-Fejér polynomials
for functions of bounded variation. We shall give an estimate for the rate
of convergence of Hn(f,x) for functions of bounded variation at points of
continuity. In addition, we shall prove that at points of discontinuity
where f(x+0) # f(x-0) the Hermite—Fejér polynomials Hn(f,x) do not

converge.
2. RESULTS. Our first result can he stated as follows:

THEOREM 1. Let f be a function of bounded variation on [-1,1] and

continuous at x < (-1,1). Then for all n sufficiently large

64 Ti(x) n ; i
(2.1) In (£, - £60] < —— k21 Velx - ¢ x+ ]+

ann(x)] n|Tn(x)|
2n s X+ 2n

+ 2 =
vaX

1980 Mathematics Subject Classification 41A05, 41A10, 41A25, 41A36
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6 R. BOJANIC AND F.H. CHENG

Here, Vf[a,b] is the total variation of f on [a,b], usually denoted
*
by VO(E)
As far as the precision of estimate (2.1) is concerned, consider the

- 2
Hermite-Fe jer polynomial of the function f(x) = x~ at x = 0, for even n.

Since Tn(O) =1 if n 1is an even integer, we have
n Ti(O) 1
H (£,0) - £(0) = ) — == -
k=1 n

On the other hand, from (2.1) it follows that

n
64 L b ”
| (£,0)-£¢0)] < = kzl Vel- ool *+ 2. [- 3o 3=
n

12 m

g = k£1 vlo, o]+ av [o, 5-].
2
Since Vf[O,G] = §7, we have
2 n 2
1287w 1 ™ C

[H_(£,0) - £(0)] < L a2 (€

" =8 g1 o O

2

for some C > 1. Hence for the function f(x) = x when n 1is even integer
we have

L |0 (£,0) - £¢0)] ¢ £

n—'"n "’ - n
for some positive constant C > 1. Therefore (2.1) cannot be improved
asymptotically.

lHowever, if x 1is a point of discontinuity of f where

f(x+0) # f(x—0), the sequence (Hn(f,x)) is no longer convergent. This is

the content of the following theorem.

THEOREM 2. If f 1is a function of bounded variation on [-1,1] and
x < (-1,1) then

sup

lim1nf

1 +
H (f,%) = 5(£0c+0)+£(x-0) ) | ;—lf(x+0) - £(x-0)| B(x)
*We assume here and in the rest of the paper that f 1is extended to the
entire real line by f(x) = f(1) for x > 1 and f(x) = f(-1) for
x < —1.



