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Chairman’s introduction

By E.C.Zegman, F.R.S.
Mathematics Institute, University of Warwick, Coventry CV4 TAL, U K.

The understanding of chaos and strange attractors is one of the most exciting
areas of mathematics today. It is the question of how the asymptotic behaviour
of deterministic systems can exhibit unpredictability and apparent chaos, due to
sensitive dependence upon initial conditions, and yet at the same time preserve a
coherent global structure. The field represents a remarkable confluence of several
different strands of thought.

1. Firstly came the influence of differential topology, giving global geometric
insight and emphasis on qualitative properties. By qualitative properties I mean
invariants under differentiable changes of coordinates, as opposed to quantitative
properties which are invariant only under linear changes of coordinates. To give
an example of this influence, I recall a year-long symposium at Warwick in
1979/80, which involved sustained interaction between pure mathematicians and
experimentalists, and one of the most striking consequences of that interaction
was a transformation in the way that experimentalists now present their data. It is
generally in a much more translucent form: instead of merely plotting a frequency
spectrum and calling the incomprehensible part ‘noise’, they began to draw
computer pictures of underlying three-dimensional strange attractors.

2. Secondly, classical differential equations remain as important as ever. Al-
though the general theory has seen major advances in the last two decades, every
now and then it runs into a brick wall. For example after Thom’s spectacular
success in the 1960’s in proving the density of stable functions and classifying
elementary catastrophes, a similar programme was attempted for dynamical sys-
tems. Structurally stable systems, however, turned out to be neither dense nor
classifiable. Attention has eonsequently now switched back to examining classical
examples with the advantage of new insight. Meanwhile there is a vast mountain
of unsolved problems for the mathematician to work on. Even the notion of strange
attractors is not, as yet, satisfactorily defined, and will remain so until there is
enough theory built upon it to give an appropriate definition due weight.

3. Thirdly, comes the influence of the ergodic theoretical approach, bringing
ideas of entropy and averaging to bear upon differential equations. Previously
these two fields were studied separately: a system was thought to be either
deterministic or ergodic. But now we are familiar with many examples in which
the regions of predictability and chaos are closely interwoven, and the transitions
between the two are of paramount importance.

4. Fourthly was the advent of fast interactive graphics in computers, which
enabled one to perceive patterns within complex systems that might otherwise
never have been suspected to be there, and to formulate conjectures that can then
be proved by traditional methods. A beautiful example of this has been the use of
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4 E. C. Zeeman

renormalization techniques to study the breakdown of invariant tori and the onset
of chaos. :

5. Fifthly is the development of precision experiments in chaotic physical
systems. For example there have been major advances in the depth of
understanding of the onset of turbulence. And the confidence that this has given to
physicists and astronomers has opened their eyes to many examples, now well
documented, of deterministic chaos amongst natural phenomena.

6. Sixthly, and finally, has come a new understanding of chaotic biological sys-
tems. Mathematical modelling in biology tends to be either very simple or very
sophisticated. For most research in biology one needs little more mathematical
equipment than the integers, but at the other end of the spectrum one needs very
sophisticated mathematics, because biology is in principle far more complicated
than physics. We shall see in the next few decades a new generation of math-
ematical biologists beginning to tackle problems in which the complexity is
fundamental.

Summarizing : it is the confluence of these ideas makes the subject so rich, and
promises us a fascinating meeting.
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Diagnosis of dynamical systems with
fluctuating parameters

By D. RvELLE

Institut des Hautes Etudes Scientifiques, 35 Route de Chartres,
91440 Bures-sur- Yvette, France

Many time evolutions occurring in Nature may be considered as non-
autonomous, but dependent on parameters that vary slowly with time.
It is argued here that some, but not all, of the tools used to understand
chaotic dynamics remain useful in this situation.

In recent years it has been ascertained that many time evolutions observed in
Nature exhibit the features of chaos. This means that they are deterministic time
evolutions involving only a finite number of degrees of freedom, but that a
complicated non-periodic behaviour is observed, due to sensitive dependence on
wnitial condition. Mathematically, the deterministic time evolution corresponds to
an autonomous differentiable dynamical system, sensitive dependence on initial
condition means that a small perturbation of the initial condition will grow
exponentially with time (as long as it does not become too large). The asymptotic
evolution of the system takes place on a (usually) complicated set in phase space
called a strange attractor.

A fundamental finding is that hydrodynamiec turbulence is chaotic, and de-
scribed by strange attractors. Many other examples of chaos have been demon-
strated clearly in various areas of physics and chemistry, and less clearly in biology
and economics. Investigations of experimental chaos have been mostly of either
geometric or ergodic nature. (The study of chaotic power spectra, broad band
spectra, has also played an important role historically, but does not at this time
yield the sort of detailed information that is provided by other techniques.) The
geometric approach visualizes reconstructions of attractors and of bifureations
and is limited to weakly excited systems (‘onset of turbulence’). The ergodic
approach determines information dimensions, characteristic (i.e. Liapunov) ex-
ponents and entropies, and is applicable to moderately excited systems.

The analysis of relatively modest data can provide a usable power spectrum, or
an estimate of the information dimension by the Grassberger—Procaccia algo-
rithmt. In general, however, the detailed diagnosis of chaotic dynamical systems
requires long time series of high quality (stability of parameters of the system
and precision of experimental measurements). One faces then the problem
that the systems for which our techniques work best are not those in which we are
mostly interested. Among the latter we may quote pulsating variable stars,

1 See Grassberger & Prococeia (1983); see also Eckmann & Ruelle (1985) for a geheral review
of the ergodic approach.
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6 D. Ruelle

electroencephalograms and time series of economics. One can of course dismiss at
least the last two examples by arguing (reasonably) that the electrical activity of
the brain, and the stock market, are not autonomous dynamical systems with few
degrees of freedom.

Against this reasonable view let me remark that information dimension esti-
mates for BEGs (electroencephalograms) (see Layne et al. 1986 ; Rapp et al. 1987) and
time series of economics (see Scheinkman & Le Baron 1986) are not at all
suggestive of pure randomness. Let me talk of EEG data that I have seen (some
from Rapp and some from Lehmann, analysed in Geneva in collaboration with
J.-P. Eckmann and 8. Kamphorst). They suggest that there are many degrees of
freedom, or ‘modes’, with decreasing amplitudes, and that computations of
information dimension yield variable results depending on which modes have
amplitudes sufficiently large to be captured by a given calculation. This type of
‘explanation’ is, however, basically unsatisfactory because ‘modes’ cannot in
general be separated in a truly nonlinear theory.

What then ? I suggest that some interesting time evolutions occurring in Nature,
those with adiabatically fluctuating parameters (AFPs), although not represented by
an autonomous dynamical system, are accessible to analysis. 1 have in mind
evolutions of the type

dz/dt = F(x,A(t)) (continuous time)

or %y = flz,A(n)) (discrete time),

where the time dependence of A is assumed to be adiabatic (slow compared with
the characteristic times of the autonomous systems obtained by fixing A), and not
too large. Then, instead of a fixed attractor A, we have a family (AY
depending on A = A(t) or A(n). The evolution of A might itself be determined by
a dynamical system, but we consider it as arbitrarily given @ priori. Note that a
time evolution of the above type is expected both for EEGs and in economics. Note
also that noise can be accommodated in our A-dependence provided that it satisfies
the requirement of adiabaticity.

A first remark is that in a system with aFes the information dimension will be
considerably messed up, because instead of looking at an attractor A we are looking
at a union U A,. The observed information dimension will thus be the dimen-
sion of the attractors A, (supposed to be independent of A) plus the dimension
of the set of As in parameter space. If we observe, for instance, an attracting
periodic orbit with slowly decreasing amplitude (mechanical oscillations with
friction) we shall obtain a dimension equal to 141 = 2. Long-term evolution in
economics would similarly increase the dimension by 1. All we can say in general
is that the observed dimension is an upper bound to the dimensions of the A,
(more precisely one should speak of the information dimension of invariant prob-
ability measures carried by A,). If one suspects (as in economices) that there is a
long time ‘secular’ evolution of the system, this can be checked by taking an early
point X (£,) on the reconstruced attractor and looking at the statistics of times at
which the point X (¢) comes back close to X(¢,). (For a long time series these times
will be predominantly at the beginning of the series if there is a secular evolution
of the system.)



Dynamical systems with fluctuating parameters 7

Contrary to the dimension, the higher characteristic exponents may not be
much perturbed by the fluctuation of the parameters A. In other words, it will
often be the case that the higher characteristic exponents are stable practically
under small changes of A; note however that this is not a mathematical statement
of continuity. (If the time evolution of A(f) is given by a dynamical system,
adiabaticity will correspond to small exponents for the A-evolution, and those will
not interfere with the higher characteristic exponents of the global system.)
Therefore the determination of the higher characteristic exponent (or exponents)
is very desirable for systems with AFPs, because it (or they) can provide more
unambiguous information than the information dimension.}

We turn now to the problem of short-term predictions for the time evolution of
dynamical systems. Consider for simplicity a time series (u;) corresponding to a
system with discrete time, and chose an embedding dimension » such that the
points (%, ..., Z;,,_,) € R® give a faithful representation of the dynamical system
on its attractor. Then one can determine a continuous function @ such that

Uirn = Py, Usig, <oy Ugpn_y)

(see Ruelle 1987, §3). The introduction of AFps will not make this representation
useless. Therefore short-term predictions of the evolution of a dynamical system
with fluctuating parameters remain possible.
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Discussion

N. O. Wziss (Department of Applied Mathematics and Theoretical Physics, Univ-
ersity of Cambridge, U.K.). Surely there will be difficulties if one is dealing with a
physical system involving several disparate timescales. One might attempt to
describe its behaviour by techniques involving separation of scales or averaging,
but if one simply increases the embedding dimension there may be spurious results.

+ See Eckmann et al. (1987) for the description of an algorithm for the determination of the
characteristic exponents.
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For example, solar magnetic activity shows several different timescales, all of
which appear to involve chaos. The day-to-day variation (which has been studied
by Spiegel and his colleagues) can be separated from the 11-year solar cycle (which
is aperiodic) and from the long-term irregular modulation associated with grand
minima. No doubt there are other timescales too and each of them could have its
own low-dimensional attractor.

D. RueLLE. The choice of a unit of time between measurements, and of the total
recording time, operate a certain choice of timescale. The effect of smaller scales
may appear as noise, and that of longer scales as drift. The ideas of this paper
would apply to this drifting situation.
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Nonlinear dynamics, chaos and complex cardiac
arrhythmias

By L. Grass!, A L. GOLDBERGER? M. COURTEMANCHE!
AND A. SHRIER!

! Department of Physiology, McGill University, Montreal,
Quebec, Canada H3G 1Y6
2 Cardiovascular Division, Beth Israel Hospital, Boston, Massachusetts 02215,
US.A.

Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise

to complex dynamics that is well described by one-dimensional finite

difference equations. As stimulation parameters are varied, a large

number of different phase locked and chaotic rhythms is observed. Simi-

lar rhythms can be observed in the intact human heart when there is

interaction between two pacemaker sites. Simplified models are analysed,
- which show some correspondence to clinical observations.

1. INTRODUCTION

The normal adult human heart at rest usually beats at a rate of between 50
and 100 times per minute. In many ecircumstances, some of which are life-
threatening, but most of which are not, the normal rhythmicity is altered, resulting
in abnormal rhythms called cardiac arrhythmias. The point of this paper is to
show that a branch of mathematics called nonlinear dynamics may be useful in the
analysis of physiological processes believed to underlie normal heart rate regu-
lation and some cardiac arrhythmias.

The idea that mathematical analysis can play a role in understanding cardiac
arrhythmias is not novel. Indeed, in the 1920s it was demonstrated that as
parameters in mathematical models for the heart were varied, several different
rhythms that resembled clinically observed arrhythmias could be generated
(Mobitz 1924; van de Pol & van der Mark 1928). In nonlinear mathematics,
these changes in the qualitative features of the rhythms that are observed as par-
ameters vary are called bifurcations. Thus the problem of understanding cardiac
arrhythmias in the human heart is identified with understanding the bifurca-
tions and complex dynamics in mathematical models of the human heart.

One type of dynamic behaviour that is the object of intensive analysis in
mathematics is chaos. Loosely, chaos is defined as aperiodic dynamics in deter-
ministic systems in which there is sensitive dependence to the initial conditions.
This means that although in principle one could determine precisely the future
evolution of the system starting from some initial condition, for chaotic dynamies
any difference in the initial condition, no matter how small, will eventually lead
to marked differences in the future evolution of the system. Although the existence
of chaos was known to Poincaré and others since the end of the last century, in the

[9]



10 L. Glass, A. L. Goldberger, M. Courtemanche and A. Shrier

past decade there has been a recognition of the potential significance of chaos in
understanding the genesis of aperiodic dynamics experimentally observed in the
natural sciences (Cvitanovic 1984). Unfortunately, there is in our view not yet an
adequate operational definition for chaos in experimental or naturally occurring
systems, but see Mayer-Kress (1986) for recent advances. The concept of chaos
excludes non-deterministic stochastic processes, such as the Poisson process or
random walk. It is not yet known how to measure the relative contribution of
chaos as opposed to non-deterministic stochastic processes in experimental
data.

Normal individuals show marked fluctuations in heart rate (Kitney &
Rompelman 1980 ; Kobayashi & Musha 1982 ; Pomeranz et al. 1985 ; De Boer et al.
1985). In addition, cardiac arrhythmias are often extremely irregular and unstable
(Pick & Langendorf 1979 ; Schamroth 1980). The adjective ‘chaotic’ is sometimes
used to characterize cardiac arrhythmias that are believed to arise when there are
several pacemaker sites competing for control of the myocardium (Katz 1946;
Phillips et al. 1969; Chung 1977). It has been proposed that chaotic dynamics, in
the mathematical sense, may underlie normal heart-rate variability (Goldberger
et al. 1984; Goldberger & West 1987) as well as certain cardiac arrhythmias in
humans (Guevara & Glass 1982 ; Smith & Cohen 1984 ; Glass ¢t al. 1986b). The
absence of a clear definition for chaos in experimental data has led to controversy.
For example,ventricular fibrillation, an arrhythmia that leads to rapid death, is
frequently called chaotic by clinicians, and it has been proposed that it may be
associated with chaos in deterministic systems (Smith & Cohen 1984). However,
there are marked periodicities during ventricular fibrillation, and the presence of
deterministic chaos in this arrhythmia has been questioned (Goldberger et al.
1985, 1986).

In humans it is frequently difficult to analyse the mechanism underlying an
arrhythmia, and systematic experimental studies are usually not feasible. One
means of analysis is from the electrocardiogram (Ecg), a record of electrical
potential differences on the surface of the body that reflects the electrical activity
associated with the heartbeat. Because the EcG can be obtained with lightweight
monitors, it can be readily recorded over long time intervals. The ambulatory
(Holter) Eca is an important means for evaluating patients. Holter recordings for
as long as 24 h can be readily obtained, but conventional analysis of such records
is limited. The great wealth of data about the dynamics of the heart that is
contained in such records is generally distilled to characterize the mean heart rate
and range. The presence and frequency of abnormal electrocardiographic com-
plexes, which reflect abnormalities in cardiac impulse formation and propagation,
are also determined. However, the analysis of long-term fluctuations in the
Holter rce is largely ignored.

One class of arrhythmias that has recently been the subject of much attention
results from the presence of two pacemakers: the normal (sinus) pacemaker and
a pacemaker at an ectopic (non-sinus) location. Such rhythms, whose existence
has been recognized since the start of this century (Fleming 1912; Kaufmann &
Rothberger 1917) are now called parasystolic rhythms. The possibility for inter-
actions between the sinus rhythm and the ectopic rhythm often complicates
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interpretation of such rhythms. However, recent workers have made great
progress in developing both experimental (Jalife & Moe 1976; Jalife & Michaels
1985) and theoretical (Moe et al. 1977; Swenne et al. 1981; Tkeda et al. 1983)
models for parasystole. Interpretation of Ece records has led to the recognition of
the importance of parasystolic mechanisms (Jalife et al. 1982; Nau et al. 1982;
Castellanos et al. 1984).

Here we consider the interaction between a fixed periodic stimulus and a cardiac
oscillator. Such a problem is of interest because it is amenable to experimental and
theoretical analysis and because of its relevance to the interpretation of para-
systolic rhythms. In §2 we consider the effects of periodic stimulation of spon-
taneously beating aggregates of cells from embryonic chick heart (Guevara et al.
1981; Glass et al. 1983, 1984, 1986b). Theoretical analysis of this system shows
that periodic dynamics are expected at some stimulation frequencies and
amplitudes, whereas chaotic dynamics are expected for other stimulation
parameters. Experiments are in close agreement with the theory. In §3 we develop
a theoretical model for parasystole. The model extends previous theoretical
models of parasystole (Moe et al. 1977 ; Swenne et al. 1981 ; Ikeda et al. 1983 ; Glass
et al. 1986a). We describe the bifurcations in the theoretical model and show that
chaotic dynamics is expected over some regions of parameter space. In §4 we
discuss Holter EcG records from ambulatory patients who display frequent ectopic
beats. These records may show extremely irregular dynamics which we discuss in
the context of chaotic dynamics and modulated parasystole. Finally, the
significance of this approach to the analysis of cardiac dynamics is discussed.

2. PERIODIC STIMULATION OF A CARDIAC OSCILLATOR

In this section we describe the effects of single and periodic stimulation of an
aggregate of spontaneously beating cells from embryonic chick heart. As this work
has been described in several recent publications, we briefly summarize the main
results and refer the reader elsewhere for more details (Guevara ef al. 1981 ; Glass
et al. 1983 ; Glass et al. 1984 ; Glass et al. 1986b; Guevara et al. 1986).

Spontaneously beating aggregates of ventricular heart cells are formed by
dissociating the ventricles of seven-day embryonic chicks and allowing the cells to
reaggregate in tissue culture medium. The resulting aggregates are approximately
100-200 pm in diameter and each beats with its own intrinsic frequency, which lies
in a range of about 60-120 times per minute (DeHaan & Fozzard 1975). A glass
microelectrode is inserted intracellularly and can be used to inject single and
periodic current pulses into the aggregate. In the present context, the electrical
stimulator is analogous to the sinus rhythm, and the aggregate is analogous to an
ectopic focus. Clearly, this represents a gross oversimplification of the anatom-
ically complex heart, as it in no sense takes into account the spatial heterogeneity
of cardiac tissue nor the various feedback mechanisms that act to modulate cardiac
activity in vivo. Nevertheless, as stimulation parameters are varied, this model
system generates a great variety of rhythms that resemble clinically observed
arrhythmias. Some of these rhythms are periodic with N cycles of the periodic
stimulation for each M cycles of the cardiac oscillation (N:M phase locking).
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Other rhythms are aperiodic (figure 1). The dynamics of this system can only be
understood by using techniques in nonlinear dynamics. Thus, this model system
is useful to fix ideas and to form a foundation for the analysis of more complex
situations. _

In response to a single pulse of electrical current, the phase of the oscillation is
usually reset. The magnitude of the resetting is proportional to the amplitude and
the phase of the current pulse. Generally within a few cycles, the rhythm is re-
established at the same frequency as before but with a permanent shift of phase.
The re-establishment of the same amplitude and frequency of the oscillation
following a perturbation, indicates that from a mathematical point of view it
should be useful to think of the cardiac oscillation as a stable limit cycle oscil-
lation. A stable limit cycle oscillation represents a periodic solution of a differential
equation that is attracting in the limit £ — oo, for points in the neighbourhood of
the cycle.
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FiGure 1. Representative transmembrane recordings showing the effects of intracellular
periodic stimulation in vitro of spontaneously beating embryonic heart cells from chick. The
stimulus artifact is observed as a narrow upward deflection. The broader complex is the
action potential which corresponds to the contraction of the aggregate. (a) Stable phase-
locked rhythms; (b) rhythms in which the time from the stimulus artifact to the action
potential progressively increases until a beat is dropped; this is analogous to the
Wenckebach phenomenon in electrocardiology (Pick & Langendorf 1979); (c) period-
doubling bifurcations and irregular chaotic dynamics; (d) irregular thythm in which there
are more action potentials than stimuli. From Guevara et al. (1981).
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Theoretical analysis of this system is possible by assuming that following a
stimulus, the return to the cycle is extremely rapid (figure 2). Thus, if a periodic
train of stimuli is delivered to the system with a time interval of T between the
stimuli, then the effects of periodic stimulation can be computed from the finite
difference equation

D1 = (@) + 7 (mod 1), (1)
o=1
b= ¢i
AL b
\\
9(g)
=4 =0

¢¢+|=g(¢i)+'r

Fioure 2. A schematic model for the perturbation of a limit cycle oscillation by a periodic
stimulus. Provided that the relaxation to the limit cycle following a stimulus is rapid, (1)
can be derived.

where @, is the phase of the ¢th stimulus and 7 = T'/T,, where T, is the control
cycle length of the aggregate. The function g, called the phase transition curve,
depends on the strength of the electrical current and can be measured from the
phase resetting resulting from a single stimulus (Perkel et al. 1964 ; Pavlidis 1973 ;
Guevara et al. 1981; Glass ef al. 1983, 1984).

Equation (1) is a finite difference equation and the analysis of bifurcations of
such equations is a topic of much current interest. In the present case, the finite
difference equation takes a point on the circumference of a circle, ¢,, and generates
a new point also on the circumference of a circle, ¢,,, (it is called a circle map). The
analysis of circle maps was initiated by Poincaré and major advances in analysing
the bifurcations of circle maps were made by Arnol’d (1965) for the case of
invertible (for each ¢; there is a unique ¢, ., and vice versa) circle maps. In the
practical situations that arise in the experimental system the circle maps are not
always invertible and an extension of the theory of invertible circle maps was
carried out (Guevara & Glass 1982 ; Glass et al. 1983, 1984 ; Keener & Glass 1984 ;
Belair & Glass 1985). The analysis of bifurcations of noninvertible circle maps
provides a fertile field for mathematical research (for a recent study and references
to other work see MacKay & Tresser 1986).

From (1) it is possible to compute the effects of periodic stimulation at any
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frequency once g, which is measured experimentally, is determined (figure 3). The
following are the main conclusions derived from the experimental and theoretical
studies. (i) There is a well-defined ordering of phase-locked rhythms corresponding
to theoretical predictions based on the analysis of circle maps; (ii) for some
stimulation parameters for which one theoretically computes that there should be

QO W)W NN -
BN = O N e

mO4 P> 0D o

A4 005

irregular

3:5

11 34

23

1.0 1.4

FieurE 3. Experimentally observed dynamics for periodically stimulated aggregates of chick
heart cells superimposed on theoretically computed phase locking zones. The computations
use (1) and experimentally measured phase transition curves as described in Glass et al.
(1984). 7 represents the period of the stimuli divided by the period of the oscillations in the
aggregates. 4 is the amplitude of the stimulus in arbitrary units. The circle map in (1) is
invertible for 0 < 4 < 0.039 and the Arnol 'd tongue structure is observed. From Glass et al.
(1984).

chaotic dynamics, aperiodic dynamics are experimentally observed ; (iii) for situ-
ations in which the dynamics are believed to be chaotic, if ¢,,, is plotted as a
function of ¢, from experimental data then the results are in good agreement with
maps calculated based on single pulse phase resetting studies. Thus, our ability to
compute theoretically the bifurcations for this system, and the strong agreement
between theory and experiment, gives us confidence that the aperiodic dynamics
in some regions of parameter space would still be present even if it were possible
to eliminate all environmental noise (i.e. the dynamics is chaotic for some par-
ameter values).

3. THEORETICAL MODELS FOR PARASYSTOLE

In parasystole there is competition between the normal sinus pacemaker and a
pacemaker which is present at some ectopic (i.e. non-sinus) focus. Although the
ectopic focus can be present in either the atria or ventricles, for the current
diseussion we assume that the ectopic focus is present in the ventricles. The
recognition of the possibility of ventricular parasystole dates back at least as far
as Fleming (1912) who based his work on the analysis of pulse pressure data. In
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the ideal situation the two rhythms have their own set frequencies and there is no
phase resetting of the ectopic focus by the sinus rhythm. This ‘pure’ parasystole
has recently been analysed (Glass et al. 1986a) and we follow the treatment there.
It is also possible that the sinus rhythm can act to modulate the ectopic rhythm
(Jalife & Moe 1976 ; Moe et al. 1977 ; Swenne ¢t al. 1981 ; Ikeda ef al. 1983). For this
case of ‘modulated 'parasystole we follow the basic ideas sketched out in these
earlier papers, but try to place the analysis in the context of current studies in
nonlinear dynamics and give some new computations. The above formulations
assume that parameters remain constant. In realistic situations, the parameters
may in fact fluctuate. Accordingly, we consider some effects of parameter fluc-
tuation in the above models.

(a) Pure parasystole

We assume the mechanism for parasystole considered by Fleming (1912) and
Kaufman & Rothberger (1917); figure 4. There is a normal sinus rhythm with
period ¢, and an ectopic thythm with a period ¢,, where ¢, > {,. After each sinus
beat there is a refractory period 6. If the ectopic focus generates an impulse during
the refractory period it is blocked, but otherwise it will lead to an ectopic beat
which can be recognized on the electrocardiogram because of its abnormal mor-
phology. After each ectopic beat, the next sinus beat is assumed to be blocked,
resulting in a ‘compensatory pause’.
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FicURE 4. Schematic model for pure parasystole. Sinus rhythm (s) and ectopic rhythm (e) are
shown. Refractory time is represented as a shaded region. Any ectopic beat that falls outside
the refractory time is conducted (filled arrows) and leads to a blocking of the subsequent
sinus beat (dashed lines). Ectopic beats falling during the refractory time are blocked (open
arrows). In the illustration 6/t, = 0.4, t,/t, = 1.65, and there are either 1, 2 or 4 sinus beats
between ectopic beats. From Glass et al. (1986a).

Remarkably, the hypothesized mechanism for pure parasystole is equivalent to
a well-studied problem in number theory (Slater 1967) and a very detailed analysis
of the dynamics for fixed f,, t, and 6 can be given (Glass et al. 1986a). In particular,
we have found the following rules for parasystole.

Rule 1. For any ratio of ¢,/t, there are at most three different values for the
number of sinus beats between ectopic beats.

Rule 2. One and only one of these values is odd.

Rule 3. For any value of ¢,/t, at which there are three different values for the
number of sinus beats between ectopic beats, the sum of the two smaller values is
one less than the larger value.

Rule 4. Consider the sequence giving the number of sinus beats between ectopic
beats. One and only one of these values can succeed itself.

To illustrate these rules we have numerically computed the sequences giving the
number of sinus beats between ectopic beats for fixed parameter values. For any
fixed set of parameters call p(a), p(b) and p(c) the probability that there are a, b



