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Introduction

An Einstein metric is a Riemannian metric on a smooth manifold of
constant Ricci curvature, i.e. a Riemannian metric whose Ricci tensor
is proportional to the metric tensor. As the curvature tensor is
expressed in terms of second derivatives of the metric tensor, finding
an Einstein metric is reduced to a system of partial differential
equations. This system of equations corresponds to the Einstein field
equation in general relativity although in this case the metric is
Lorentzian. A geometric meaning of an Einstein metric may be that it
is a metric which makes the manifold the best shape. When one studies
the geometry or topology of a manifold, if the existence of an
Einstein metric on the manifold is known, it is helpful to use the
Einstein metric. A typical example is the following result of Yau. In
complex geometry the Ricci form, i.e. the (1,1)-form associated to the
Riceci curvature, represents the first Chern class by the Chern-Weil
theory. Using this fact and the existence of a Kahler-Einstein
metric, Yau [YS1] proved

-1H" 2im;ll CT_Z Ty & -nH" CT

for any compact complex manifold of dimension m and with negative
first Chern class.

These notes are concerned with the case where the manifold is a
compact complex manifold and the metric is a Kahler metric, i.e. a
Riemannian metric compatible with the complex structure. In this case
there is a natural necessary condition for the existence of a
Kahler-Einstein metric, namely, if M is a compact Kahler-Einstein

manifold, the first Chern class cl(M) must be negative, zero or

positive, i.e. CI(M) is represented by a negative, zero or positive
real (1,1)-form, according to the sign of the Ricci curvature. One
then can ask the converse. The negative and zero cases are already

known. Namely, there exists a Kahler-Einstein metric unique up to



homothety in the case where c,(M) < 0, and also unique in the case
where CI(M) = 0 if one fixes a Kahler class ([AT2] and [YS11]). Here
the Kahler class means the de Rham class represented by the Kahler
form.

The purpose of these notes is to discuss the existence and
nonexistence problem of Kahler-Einstein metrics on compact complex
manifolds of positive first Chern class. A first obstruction to this
existence problem in the positive case was found by Matsushima [MY1l],
who proved that if M 1is a compact Kahler-Einstein manifold, the Lie
algebra bH(M) consisting of all holomorphic vector fields on M is
reductive. There are many examples of compact complex manifolds of
positive first Chern class with nonreductive bHh(M), e.g. the blow~-up
of the complex projective plane at a point. Besides Matsushima's
obstruction the author [FAl] found another obstruction. This is
defined as an integral invariant on compact complex manifolds of
positive first Chern class, which can be viewed as a Lie algebra
character f : h(M) » C and whose vanishing is a necessary condition
for the existence of a Kahler-Einstein metric. 1In these notes we
gather recent results around these obstructions; their formulations,
origins, generalizations, interpretations, sufficiency for the
existence problem, the lifting problem of f to a group character,
and prospects for the future. It should be mentioned that there is a
third obstruction which will not be dealt with in these notes. In
fact a theorem of Kobayashi-Lubke ([KS31,[LM]) says that if E is a
holomorphic vector bundle over a compact Kahler manifold then E s
semistable. Applying this theorem to the holomorphic tangent bundle
we get the third necessary condition: if M admits a Kahler-Einstein
metric the tangent bundle must be semistable. For this topic we refer
the reader to [KS4].

In the positive case, Calabi conjectures that if M 1is a compact
complex manifold with c¢,(M) > 0 and bh(M) = 0 there would exist a

1
Kahler-Einstein metric (see [YS31). At the same time he studies the



following variational problem. Let M be a compact Kahler manifold
and WQ be the set of all Kahler metrics whose Kahler forms represent

a given Kahler class Q: find a critical point of & : WQ - R defined

by
b(g) = I 02 dv
M g g
where o and dv are respectively the scalar curvature and the

g g
volume form with respect to g € mQ. A critical point g is called

an extremal Kahler metric, and the first variation formula shows that
g is an extremal Kahler metric if and only if the gradient vector
field of ag is a holomorphic vector field. If Q = CI(M) >0 and f
= 0, then an extremal Kahler metric is a Kahler-Einstein metric; in
particular if Q = CI(M) >0 and b(M) = 0, we have the same
conclusion. Calabi expected that this variational problem could be
solved on any compact Kahler manifold with any Kahler class Q. However
a necessary condition for the existence of an extremal Kahler metric
was found by himself ([CE2]). His condition determines the structure
of h(M), which generalizes Matsushima's theorem and its generalization
due to Lichnerowicz [LAl]l for compact Kahler manifolds of constant
scalar curvature. Examples which do not satisfy Calabi's condition
were exhibited by Levine [LM]l. Further, although Calabi's condition
says nothing about the case when h(M) = 0, Burns recently found a
surprising example of a compact Kahler manifold with h(M) = 0 which
does not carry any extremal Kahler metric. The example of Burns makes
us somewhat pessimistic about the above conjecture of Calabi. However,
so far there is no known example of a compact complex manifold with
cl(M) > 0 which does not carry any extremal Kahler metric.

The character f is originally defined on compact complex
manifolds with cl(M) > 0. It can however be generalized to a Kahlerian
invariant: more precisely, it can be defined on any compact Kahler
manifold using a Kahler metric but depending only on the Kahler class.

The most general formulation in this direction is due to Bando [BS1] who



defines fk : bM)y » C, 1 <k <m-=dim M, such that f, is alLie
algebra character, depends only on the Kahler class and vanishes if
there is a Kahler metric with harmonic k-th Chern form. The case k =
1 1is due to the author [FA2] and Calabi [CE2]. It can be proved that
if f1 = 0, any extremal Kahler metric is a metric of constant scalar
curvature.

On the other hand Morita and the author [FA-MS1,2] generalized f
to an invariant which is defined on any compact complex manifold M
and depends only on the complex structure of M. More generally, let
G be a complex Lie group and IK(G) be the set of all holomorphic
symmetric G-invariant polynomials of degree k. Then we can define a
linear map F : Im+p(GL(m.C)) - IP(H(M)) where H(M) is the group of

all automorphisms of M. F depends only on the complex structure of

m+1
1

considered as generalizations of f. Thus f belongs to the

M and (m+1)f = F(c ); hence the members of the image of F are
intersection of the invariants of compact complex manifolds and of the
Kahlerian invariants.

We see that F appears naturally in the context of classical
theories such as those of the Lefschetz numbers, the equivariant
cohomology and the Chern-Simons invariants. The merits of this
observation are, first of all, that we can obtain a localization
formula of f to compute f(X) fairly easily in terms of the zero
set of the vector field X, and secondly that we can find how f lifts
to a group character. In fact we can see that f 1lifts to a group
character F : H(M) » C/Z. In [FA3] the author derived an explicit
formula of the imaginary part of F, but the explicit formula of the
real part is still missing. The author thinks , without strong
conviction, that the real part is more important. The reason is as
follows. If h(M) = 0, H(M) is a finite group; any character of a
finite group into R is trivial, but a character into R/Z may not

be; thus the imaginary part of F may obstruct the existence of a



Kahler-Einstein metric even in the case when bh(M) = 0. More recently
Mabuchi and the author [FA-MT] proved that ¥ can be obtained in the
form ? = (det ¢)¥Y where 4 : H(M) » V is a representation with V a
a finite-dimensional vector space of the form V = @ m, HO(M,KQV) and
Y 1is a positive rational constant. However we have not given a
decisive answer to the above question.

Meanwhile Mabuchi [MT1] and Bando and Mabuchi [BS-MT1] also found
independently a formula for the imaginary part of the lift. Their
formula uses certain homotopy between Kahler metrics. Fixing a
reference point it defines a functional, called the K-energy map, on the
space of Kahler forms in a fixed Kahler class. Further, in [BS-MT2],
they proved that if M is a compact complex manifold of positive
first Chern class the space & of all Kahler-Einstein forms on M is
connected, and moreover that the K-energy map takes the minimum on §&.
As a corollary to this result, if H(M) 1is discrete then a Kahler
-Einstein metric, if any, is unique. Another corollary is that if M
admits a Kahler-Einstein metric then the K-energy map is bounded from
below. Using the heat equation method Bando [BS2] further proved
that, under the assumption that the K-energy map is bounded from
below, for any € > 0 there exists a Kahler metric g such that
(1-g)m < ag ¢ (l+€)m. These results are inspired by the work of
Donaldson [DS] on the existence of a Hermitian-Einstein metric on a
stable vector bundle.

Concerning the sufficiency of the vanishing of f for the
existence of a Kahler-Einstein metric, Sakane [SY] and Koiso-Sakane
[KN-SY1] proved that, for some class of Pl—bundles, the vanishing of f
is a necessary and sufficient condition for the existence of a Kahler-
Einstein metric. Sakane's existence result produced first examples of
nonhomogeneous Kahler-Einstein manifolds with positive Ricci curvature
(see also [KN-SY2] for further examples).

These notes treat only the Kahler case. For general Einstein



manifolds there is a recent monograph by Besse [BAl. The problem of
finding a Kahler-Einstein metric in the zero case is related to the
Calabi conjecture proved by Yau [YS1], which states that any real
closed (1,1)-form representing cl(M) is a Ricci form with respect to
some Kahler metric. In fact the Calabi conjecture says that if cl(M) =
0 there is a Kahler metric with vanishing Ricci tensor, which is a
Kahler-Einstein metric in the zero case. Moreover both the Calabi
conjecture and the problem of finding a Kahler-Einstein metric can be
reduced to a same single nonlinear elliptic partial differential
equation, the so-called Monge-Ampere equation ([AT1]1). We refer the
reader to the Asterisque volume [BJ2] for the Calabi conjecture and
Aubin's book [AT4] for the detailed analysis of the Monge-Ampere
equation.

The author would like to express his thanks to those who helped
him; first of all to Professor T.Ochiai, and to Y.Sakane, J.L.Kazdan,
E.Calabi, S.Morita, K.Tsuboi, S.Kobayashi and T.Mabuchi. Part of this
study was carried out while he was a visitor at the University of
California at Berkeley by the support of Japan Society for the
Promotion of Science. He is grateful to JSPS and the host Professor

S.Kobayashi.



Chapter 1 Preliminaries

8§1.1 Kihlerian geometry

In this section we review elementary facts about Kahlerian
geometry. There are two ways to introduce Kahlerian geometry; one is
from Riemannian geometry and another is from Hermitian geometry for
holomorphic vector bundles. In this section we employ the first, and
the second will be explained in the next section.

Let M be a smooth manifold of dimension n, TM the tangent
bundle and T*M the cotangent bundle. Let E - M be a real or
complex vector bundle, C”(E) the set of all smooth sections of E
and Cm(M) (resp. CE(M)) the set of all real (resp. complex) valued

smooth functions on M.

Definition 1.1.1: A connection on E is a bilinear map V : C (TM) X

Cc®(E) » C”(E), denoted by (X,s) = V.s, such that

X

(i) VexS = f v.s

(ii) Vx(fs) = (Xf)s + f VXS

where X € CT(TM), s € CT(E) and f € C*(M) or CE(M).

If one chooses a local frame field el,'-~,er, r = rank E, the
i S i
matrix valued l1-form (Gj) defined by Vej = 3 Gj e, is called the
i=1
connection form of V with respect to eyt rae . The connection

form is defined only locally and depends on the choice of the local
frame.

sz is called the cowvariant derivative of s in the direction of



X. A Riemannian metric g on M is an element of c®r*M @ T'W)
such that at every point p € M, g(p) is a positive definite
symmetric bilinear form on TM. Given a Riemannian metric there is a

unique connection Vv on TM with the defining properties

(1.1.2) X g(Y,z2) = g(VxY,Z) + g(Y,VXZ)

(1.1.3) VxY - VYX = [X,Y].

This connection is called the Levi-Civita connection. V in turn

defines a connection on T*M by duality, denoted by V¥V again:

an (Y) = X(x(Y)) - a(VXY)

where o € Cm(T*M) and X, Y € Cm(TM). Further V defines, by
derivation, a connection on vector bundles (GPTM)Q(GqT*M) for all p
and q. For instance the condition (1.1.2) can be written as Vg = 0.

In fact

ng (Y,Z) = X g(Y,Z2) - g(VXY,Z) = g(Y.VxZ) = 0.

The curvature temsor R € CT(@2T*M) is defined by

(1.1.4) R(X,Y,Z,W) = g(VXVYw = VYVXW = V[X,Y]w’ Z).

R satisfies the following relations:

(1.1.5) R(X,Y,Z,W) = R(Z,¥,X,Y) = - R(Y,X,Z,W)

(1.1.6) R(X,Y,Z,W) + R(Y,Z,X,W) + R(Z,X,Y,¥W) =0

(1.1.7) VXR (Y,Z,W,V) + VYR (Z,X,W,V) + VZR (X,Y,W,V) = 0.

(1.1.6) and (1.1.7) are respectively called the first and the second
Bianchi identities.

To explain the notations of tensor calculus, we choose a local



coordinate system (x1,~--,xn). A tensor field s €

c”(@PTM®@IT*M)) is locally written by

i--ai j j
s = s ! pj“.j Ll @"'@%QdXIQ"'deq.
1 9 9x ! ax P

Here the sum is taken if an index appears as an upper and lower index
at the same time; this convention is called the Einstein convention.
Vs defines an element of C (T'M @(QPTM)Q(QFT*M)) and is locally

written by
(1.1.8) Vs = V.s

: ] ]
dx '@ _§T ® - ® _QT ® dx 1@ coe ® dx a
9x 1 ax P
The upper and lower indices are lowered and raised using the
isomorphism between the tangent space and the cotangent space induced
by the Riemannian metric:

11"'ip . gkll . . 12"'1p{
Jl...lq {Jl k 12...1

where g = gij dx' ® dx? and (g]J) is the inverse matrix of (gij)’

Notice that this operation is compatible with the notation of (1.1.8)

because of Vg = 0. With these notations (1.1.4) is written by

k k _ m <k _ k '
(1.1.9) ViVjs VjVis = Rijtm s £ = Rij ) s .

(1.1.9) is called the Ricci identity. Using (1.1.5) and (1.1.9) one

can easily deduce

_ k
(1.1.10) Vivjsk - vjvisk = Rij ¢ Sy*

An almost compler structure on a smooth manifold M is a field
of endomorphisms J on TM such that J2 = JeJ = - 1 where 1
denotes the identity endomorphism. If such a J exists, (M,J) is

called an almost complexr manifold. An almost complex manifold is

necessarily even dimensional. Since J has two eigenvalues /-1 and
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- /-1, J induces a splitting of the complexified tangent bundle TCM:

TeM = 110 @ 7O Iy

1,0 0,1

where T M and T M respectively consist of eigenvectors

belonging to /-1 and - /-1. J is called integrable if [E,n] €
¢t %) for a1l &, nec %M. 1f £ = % (X - /7TJX) and n =
% (Y - /-1JY) where X, Y € Cw(TM), then [E,n] = 0 if and only if

N(X,Y) = [X,Y] - (JX,JY] + JOJX,Y]l + J[X,JY]l = 0.

N is called the Nijenhaus tensor. Newlander-Nirenberg theorem
[NA-NL] says that if N = 0 then M becomes a complex manifold in
such a way that
(1.1.11) I o -
az! 9z'

where (21."',zm) is a local holomorphic coordinate system. When N
=0 J 1is called a complexr structure. Conversely, given a complex
manifold, we can define J by (1.1.11) and then N for this J
naturally vanishes.

Let (M,J) be a complex manifold. A Hermitian metric on M is a

J-invariant Riemannian metric g:
gUIX,JY) = g(X,Y) X, Y € CT(TM).
The fundamental form of g is a real 2-form ® defined by

o(X,Y) = gJX,Y).

S~

Since g is J-invariant, w 1is indeed skew-symmetric and defines a
2-form. We call g a Kahler metric if o is a closed form, and
then © 1is called a Kahler form of g. The significance of Kahler
metrics may be understood by Proposition 1.1.14 below which says that
the Levi-Civita connection of a Kahler metric is compatible with the

complex structure. A complex manifold with a Kahler metric is called



a Kahler manifold.

cohomology class Qg

11

Since a Kahler form ® 1is closed it defines a

Q

2
Hio (M) .
g

in the de Rham cohomology group DR

called the Kahler class.

We extend g, Vv

a local holomorphic

EAB
where A, B € (1,---
A = 1. Then since
g(ii,i.) = g(
9z' azd

Thus the Kahler form

_ /=1
(1.1.12) 0w = o7
We define I',S , cal
AB ’
2]
"o B
_A z
9z
It is clear from the
C _
(1.1.13) rAB = FB
Proposition 1.1.14:

Hermitian metric.

(i) do = 0, i
(ii) vy = 0, i
- c _

(iii) rAB =0

Proof: (ii) => (i)

2n do (X,Y,Z)

)

and R in the C-linear way. Let (z ,---

coordinate system. We define by

2]
= g(—— ,
azA

2

)
ezB

and B z! if . zi

cc,m} YA

is J-invariant we have

g gij

) 9

—_—,J

9z! 9z’

-
3z' 3z

g/ 1 2, /AL,
1 9z

9z

w 1is locally written by

= LA dzd.

gij

dz

led the Christoffel symbols, by

C-linearity and (1.1.3) that

Let (M,J) be a complex manifold and g a

g is Kahler
VX(JY) = JVXY
except for F.k and F75 (= F.B )
ij 1] 1]

follows from

g((VxJ)Y,Z) + g((VYJ)Z,X) + g((VZJ)X,Y).

2

i

if

s

In fact

Then the following three conditions are equivalent.
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(i) => (ii) follows from N = 0O and

% g((VxJ)Y,Z) = do (X,Y,Z) - do (X,JY,JZ) - g(JX,N(Y,Z)).

(iii) => (ii) is trivial. To prove (ii) => (iii) it is sufficient
k K k
to show rij = 0 and ri} =0 by (1.1.13). rij = 0 follows from
vy i a/Tv, & ok L grke
= 3z —= 3z’ 13 5, 1l a_k
9z! az! Z
1vy & Xk Ak a2
= 5z 11 92 1d k LR - P 1 X
971 8z 9z
Fi¥ = 0 follows from
Vo L s-/Tv, & -oark o mrke
i 9z i 9z7 9z Szk
9z 9z
Iy 2 sy fE sk B, gyl . k8
C 3 13 g K X 1j g,k 1 X
82i 9z 9z 9z
q.e.d

Using (iii) of Proposition 1.1.14 we can deduce several formulae.

First of all one has

- ag._
(1.1.15) rik = gl ——%l
J 9z
where (gij) is the inverse matrix of (giﬁ): glJ gk} = 5‘k. Thus
with respect to the local frame _QT’."’_QE of TM, the connection
9z 9z

form 6 of ¥V is written by 6 = g lag.

Next one can compute R wusing (1.1.4) and (1.1.15):

(1.1.16) Riikf = - RisTx = Fijr1 = - Bk = ©
8%g,1 5 98, 98 7
(1.1.17) Ri}kT = — - gpq '9 _E



