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Preface

Software systems are now ubiquitous. Virtually all electrical equipment now
includes some kind of software; software is used to help run manufacturing indus-
try, schools and universities, health care, finance and government; many people
use software of different kinds for entertainment and education. The specification,
development, management and evolution of these software systems make up the
discipline of software engineering.

Even simple software systems have a high inherent complexity, so engineering
principles have to be used in their development. Software engineering is therefore
an engineering discipline where software engineers use methods and theory from
computer science and apply this cost-effectively to solve difficult problems. These
difficult problems have meant that many software development projects have not
been successful. However, most modern software provides good service to its users;
we should not let high-profile failures obscure the real successes of software engin-
eers over the past 30 years.

Software engineering was developed in response to the problems of building large,
custom software systems for defence, government and industrial applications. We
now develop a much wider range of software, from games on specialised consoles
through personal PC products and web-based systems to very large-scale distrib-
uted systems. Although some techniques that are appropriate for custom systems,
such as object-oriented development, are universal, new software engineering tech-
niques are evolving for different types of software. It is not possible to cover every-
thing in one book, so [ have concentrated on universal techniques and techniques
for developing large-scale systems rather than individual software products.

Although the book is intended as a general introduction to software engineering,
it is oriented towards my own interests in system requirements engineering and
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critical systems. I think these are particularly important for software engineering in
the 21st century where the challenge we face is to ensure that our software meets
the real needs of its users without causing damage to them or to the environment.

The approach that T take in this book is to present a broad perspective on soft-
ware engineering and I don’t concentrate on any specific methods or tools. I dis-
like zealots of any kind whether they are academics preaching the benefits of formal
methods or salesmen trying to convince me that some tool or method is the answer
to software development problems. There are no simple solutions to the problems
of software engineering and we need a wide spectrum of tools and techniques to
solve software engineering problems.

Books inevitably reflect the opinions and prejudices of their authors. Some
readers will inevitably disagree with my opinions and with my choice of material.
Such disagreement is a healthy reflection of the diversity of the discipline and is
essential for its evolution. Nevertheless, I hope that all software engineers and soft-
ware engineering students can find something of interest here.

Changes from the fifth edition

Like many software systems, this book has grown and changed since its first edi-
tion was published in 1982. One of my goals in preparing this edition was 1o reduce
rather than increase the size of the book and this has entailed some reorganisation
and difficult decisions on what to cut out while still including important new mater-
ial. The end result is a book that is about 10% shorter than the fitth edition.

+ The book has been restructured into seven rather than eight parts covering an
introduction to software engineering, specification, design, critical systems devel-
opment, verification and validation, management, and software evolution.

* There are new chapters covering software processes, distributed systems archi-
tectures, dependability and legacy systems. The section on formal specification
has been cut to a single chapter and material on CASE has been reduced and
distributed to different chapters. Coverage of functional design is now included
in the new chapter on legacy systems. Chapters on verification and validation
have been amalgamated.

»  All chapters have been updated and several chapters have been extensively rewrit-
ten. Reuse now focuses on development with reuse, with material on patterns
and component-based development; object-oriented design has more of a process
focus; the chapters on requirements have been separated into chapters on the
requirements themselves and chapters on the requirements engineering process;
cost estimation has been updated to COCOMO 2.

« The introductory part now includes four chapters. 1 have taken introductory
material that was distributed throughout the book in the fifth edition and covered
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it all in this part. Chapter 1 has been completely rewritten as a set of frequently
asked questions about software engineering.

* The material on critical systems has been restructured and integrated so that
reliability, safety and availability are not covered as separate topics. [ have
introduced some material on security as an attribute of a critical system.

* Program examples are now in Java and object models are described in the UML.
Ada and C++ examples have been removed from the text but are available from
my web site,

The turther reading associated with each chapter has been updated from previ-
ous editions. However, in many cases, articles written in the 1980s are still the best
introduction to some topics.

Readership

The book is aimed at students taking undergraduate and graduate courses and at
software engineers in commerce and industry. It may be used in general software
engineering courses or in courses such as advanced programming, software
specification, software design or management. Practitioners may find the book use-
ful as general reading and as a means of updating their knowledge on particular
topics such as requirements engineering, architectural design, dependable systems
development and process improvement. Wherever practicable, the examples in the
text have been given a practical bias to reflect the type of applications which soft-
ware engineers must develop.

I assume that readers have a basic familiarity with programming and modern com-
puter systems and knowledge of basic data structures such as stacks, lists and queues.

Using the book as a course text

There are three main types of software engineering courses where this book can be
used:

1. General introductory courses in software engineering For students who have
no previous software engineering experience, you can start with the introduc-
tory section, then pick and choose the chapters from the different sections of
the book. This will give students a general overview of the subject with the
opportunity of more detailed study for those students who are interested.
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2. Intfroductory or intermediate courses on specific software engineering topics
The book supports courses in software requirements specification, software design,
software engineering management, dependable systems development and soft-
ware evolution. Each of the parts in the book can serve as a text in its own
right for an introductory or intermediate course on that topic. Some additional
reading is suggested for these courses.

3. More advanced courses in specific software engineering topics In this case,
the chapters in the book form a foundation for the course which must be
supplemented with further reading which explores the topic in more detail. All
chapters include my suggestions for further reading and additional reading is
suggested on my web site. '

The benefit of a general text like this is that it can be used in several different
related courses. At Lancaster, we use the text in an introductory software engineering
course, in courses on specification, design and critical systems and in a software
management course where it is supplemented with further reading. With a single
text, students are presented with a consistent view of the subject, They also like the
extensive coverage because they don’t have to buy several different books.

This book covers all suggested material in the SE Software Engineering com-
ponent of the draft computer science body of knowledge proposed by the ACM/IEEE
in the Computing Curricula 2001 document. The book is also consistent with the
forthcoming IEEE/ACM ‘Software Engineering Body of Knowledge™ document which
is due for publication sometime in 2000 or 2001,

Web site

My web site is http://www software-engin.com and this includes links to material
to support the use of this book in teaching and personal study. The following down-
loadable supplements are available:

* An instructor’s guide including hints on teaching using the book, class and term
project suggestions, case studies and examples and some solutions to the exer-
cises. This is available in Adobe PDF format.

* A set of overhead projector transparencies for each chapter. These are available
in Adobe PDF and in Microsoft PowerPoint format. Instructors may adapt and
modify the presentations as they wish.

*  Source code in Java for most of the individual program examples, including
supplementary code required for compilation.
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» Additional material based on chapters from previous editions on algebraic speci-
fication, Z and function-oriented design. Ada and C++ examples as used in the
fifth edition are also available.

This page also includes links to copies of slides and papers on systems engin-
eering, links to other software engineering sites, information on other books and
suggestions for additional further reading.

[ am always pleased to receive feedback on my books and you can contact me
by e-mail at ian@ software-engin.com. However, 1 regret that I don’t have time to
give advice to individual students on their homework.
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