AN SOMMERVILLE

Software

ineering

ENng

6th Edition

Software Engineering

Sixth Edition

lan Sommerville

VAV Addison-Wesley

An imprint of PEARSON EDUCATION
Harlow, England - London - New York - Reading, Massachusetts - San Francisco - Toronto - Don Mills, Ontario - Sydney

Tokyo - Singapore - Hong Kong - Seoul - Taipei - Cape Town - Madrid - Mexico City - Amsterdam - Munich - Paris - Milan

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies around the world

Visit us on the World Wide Web at:
www.pearsoneduc.com

First published 1982
Second Edition 1984
Third Edition 1989
Fourth Edition 1992
Fifth Edition 1995
Sixth Edition 2001

© Addison-Wesley Publishers Limited 1982, 1984
© Pearson Education Limited 1989, 2001

The right of lan Sommerville to be identified as author of
this Work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd,

90 Tottenham Court Road, London WIP OLP.

The programs in this book have been included for their instructional value.

The publisher does not offer anPwvarrarties or representatians.in respect of their
fitness for a particular purpose, nBr does the publisher a#cebt anv liability for any
loss or damage (other than for personal injury or death) arising from their use.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Pearson Education Limited has made every
attempt to supply trademark information about manufacturers and their products
mentioned in this book. A list of trademark designations and their owners appears
on page xx.

ISBN 0 201 39815 X

British Library Cataloguing-in-Publication Data
A catalogue record for this book can be obtained from the British Library

Library of Congress Cataloging-in-Publication Data
Sommerville, lan, 1951-
Software engineering / lan Sommerville. — 6th ed.
p. cm. — (International computer science series)
Includes bibliographical references and index.
ISBN 0-201-39815-X
1. Software engineering. |. Title. Il Series,
QA76.758. S$.657 2000
005.1—dc21 00-033197

1098765432
05 04 03 02 01

Typeset by 35 in 10/12.5pt Times
Printed and bound in the United States of America

Preface

Software systems are now ubiquitous. Virtually all electrical equipment now
includes some kind of software; software is used to help run manufacturing indus-
try, schools and universities, health care, finance and government; many people
use software of different kinds for entertainment and education. The specification,
development, management and evolution of these software systems make up the
discipline of software engineering.

Even simple software systems have a high inherent complexity, so engineering
principles have to be used in their development. Software engineering is therefore
an engineering discipline where software engineers use methods and theory from
computer science and apply this cost-effectively to solve difficult problems. These
difficult problems have meant that many software development projects have not
been successful. However, most modern software provides good service to its users;
we should not let high-profile failures obscure the real successes of software engin-
eers over the past 30 years.

Software engineering was developed in response to the problems of building large,
custom software systems for defence, government and industrial applications. We
now develop a much wider range of software, from games on specialised consoles
through personal PC products and web-based systems to very large-scale distrib-
uted systems. Although some techniques that are appropriate for custom systems,
such as object-oriented development, are universal, new software engineering tech-
niques are evolving for different types of software. It is not possible to cover every-
thing in one book, so [have concentrated on universal techniques and techniques
for developing large-scale systems rather than individual software products.

Although the book is intended as a general introduction to software engineering,
it is oriented towards my own interests in system requirements engineering and

vi

Preface

critical systems. I think these are particularly important for software engineering in
the 21st century where the challenge we face is to ensure that our software meets
the real needs of its users without causing damage to them or to the environment.

The approach that T take in this book is to present a broad perspective on soft-
ware engineering and I don’t concentrate on any specific methods or tools. I dis-
like zealots of any kind whether they are academics preaching the benefits of formal
methods or salesmen trying to convince me that some tool or method is the answer
to software development problems. There are no simple solutions to the problems
of software engineering and we need a wide spectrum of tools and techniques to
solve software engineering problems.

Books inevitably reflect the opinions and prejudices of their authors. Some
readers will inevitably disagree with my opinions and with my choice of material.
Such disagreement is a healthy reflection of the diversity of the discipline and is
essential for its evolution. Nevertheless, I hope that all software engineers and soft-
ware engineering students can find something of interest here.

Changes from the fifth edition

Like many software systems, this book has grown and changed since its first edi-
tion was published in 1982. One of my goals in preparing this edition was 1o reduce
rather than increase the size of the book and this has entailed some reorganisation
and difficult decisions on what to cut out while still including important new mater-
ial. The end result is a book that is about 10% shorter than the fitth edition.

+ The book has been restructured into seven rather than eight parts covering an
introduction to software engineering, specification, design, critical systems devel-
opment, verification and validation, management, and software evolution.

* There are new chapters covering software processes, distributed systems archi-
tectures, dependability and legacy systems. The section on formal specification
has been cut to a single chapter and material on CASE has been reduced and
distributed to different chapters. Coverage of functional design is now included
in the new chapter on legacy systems. Chapters on verification and validation
have been amalgamated.

» All chapters have been updated and several chapters have been extensively rewrit-
ten. Reuse now focuses on development with reuse, with material on patterns
and component-based development; object-oriented design has more of a process
focus; the chapters on requirements have been separated into chapters on the
requirements themselves and chapters on the requirements engineering process;
cost estimation has been updated to COCOMO 2.

« The introductory part now includes four chapters. 1 have taken introductory
material that was distributed throughout the book in the fifth edition and covered

Preface vii

it all in this part. Chapter 1 has been completely rewritten as a set of frequently
asked questions about software engineering.

* The material on critical systems has been restructured and integrated so that
reliability, safety and availability are not covered as separate topics. [have
introduced some material on security as an attribute of a critical system.

* Program examples are now in Java and object models are described in the UML.
Ada and C++ examples have been removed from the text but are available from
my web site,

The turther reading associated with each chapter has been updated from previ-
ous editions. However, in many cases, articles written in the 1980s are still the best
introduction to some topics.

Readership

The book is aimed at students taking undergraduate and graduate courses and at
software engineers in commerce and industry. It may be used in general software
engineering courses or in courses such as advanced programming, software
specification, software design or management. Practitioners may find the book use-
ful as general reading and as a means of updating their knowledge on particular
topics such as requirements engineering, architectural design, dependable systems
development and process improvement. Wherever practicable, the examples in the
text have been given a practical bias to reflect the type of applications which soft-
ware engineers must develop.

I assume that readers have a basic familiarity with programming and modern com-
puter systems and knowledge of basic data structures such as stacks, lists and queues.

Using the book as a course text

There are three main types of software engineering courses where this book can be
used:

1. General introductory courses in software engineering For students who have
no previous software engineering experience, you can start with the introduc-
tory section, then pick and choose the chapters from the different sections of
the book. This will give students a general overview of the subject with the
opportunity of more detailed study for those students who are interested.

viii

Preface

2. Intfroductory or intermediate courses on specific software engineering topics
The book supports courses in software requirements specification, software design,
software engineering management, dependable systems development and soft-
ware evolution. Each of the parts in the book can serve as a text in its own
right for an introductory or intermediate course on that topic. Some additional
reading is suggested for these courses.

3. More advanced courses in specific software engineering topics In this case,
the chapters in the book form a foundation for the course which must be
supplemented with further reading which explores the topic in more detail. All
chapters include my suggestions for further reading and additional reading is
suggested on my web site. '

The benefit of a general text like this is that it can be used in several different
related courses. At Lancaster, we use the text in an introductory software engineering
course, in courses on specification, design and critical systems and in a software
management course where it is supplemented with further reading. With a single
text, students are presented with a consistent view of the subject, They also like the
extensive coverage because they don’t have to buy several different books.

This book covers all suggested material in the SE Software Engineering com-
ponent of the draft computer science body of knowledge proposed by the ACM/IEEE
in the Computing Curricula 2001 document. The book is also consistent with the
forthcoming IEEE/ACM ‘Software Engineering Body of Knowledge™ document which
is due for publication sometime in 2000 or 2001,

Web site

My web site is http://www software-engin.com and this includes links to material
to support the use of this book in teaching and personal study. The following down-
loadable supplements are available:

* An instructor’s guide including hints on teaching using the book, class and term
project suggestions, case studies and examples and some solutions to the exer-
cises. This is available in Adobe PDF format.

* A set of overhead projector transparencies for each chapter. These are available
in Adobe PDF and in Microsoft PowerPoint format. Instructors may adapt and
modify the presentations as they wish.

* Source code in Java for most of the individual program examples, including
supplementary code required for compilation.

Preface ix

» Additional material based on chapters from previous editions on algebraic speci-
fication, Z and function-oriented design. Ada and C++ examples as used in the
fifth edition are also available.

This page also includes links to copies of slides and papers on systems engin-
eering, links to other software engineering sites, information on other books and
suggestions for additional further reading.

[am always pleased to receive feedback on my books and you can contact me
by e-mail at ian@ software-engin.com. However, 1 regret that I don’t have time to
give advice to individual students on their homework.

Acknowledgements

A large number of people have contributed over the years to the evolution of this
book and I'd first like to thank everyone who has commented on previous editions
and made suggestions for change. | am grateful to the reviewers of initial drafts of
this text for their helpful comments and suggestions which helped me a great deal
when completing the finaj version.

The reviewers of the first draft were Andy Gillies and Lindsey Gillies of the
University of the West of England, Joe Lambert of Penn. State University. Frank
Maddix of the University of the West of England, Nancy Mead of the Software
Engineering Institute, Pittsburgh, Chris Price of the University of Wales,
Aberystwyth, Gregg Rothermel of Oregon State University and Guus Schreiber of
the University of Amsterdam. I'd particularly like to thank my friends Ron
Morrison of St Andrews University and Ray Welland of Glasgow University who
have reviewed previous editions and again volunteered to review this text.

Finally, my family has put up with my absence for more evenings than I like to
think while T finished this book. Thanks to my wife Anne and my daughters Ali
and fane for their coffee and tolerance.

fan Sommerville
Lancaster, February 2000

Part

Part

Part

Part

Part 5

Part &

=~

Contents at a glance

Preface

Overview

Chapter 1 Introduction

Chapter 2 Computer-based system engineering
Chapter 3 Software pracesses

Chapter 4 Project management

Requirements

Chapter 5 Software requirements

Chapter 6 Requirements engineering processes
Chapter 7 Systern models

Chapter 8 Software prototyping

Chapter 2@ Formal specification

Design

Chapter 10 Architectural design

Chapter 11 Distributed systems architectures
Chapter 12 Object-oriented design

Chapter 13 Real-time software design
Chapter 14 Design with reuse

Chapter 15 User interface design

Critical Systems
Chapter 16 Dependability

Chapter 17 Critical systems specification
Chapter 18 Critical systems development

Verification and Validation

Chapter 19 Verification and validation
Chapter 20 Software testing
Chapter 21 Critical systems validation

Management

Chapter 22 Managing people
Chapter 23 Software cost estimation
Chapter 24 Quality management
Chapter 25 Process improvement

Evolution

Chapter 26 Legacy systems

Chapter 27 Software change

Chapter 28 Software re-engineering
Chapter 29 Configuration management

References
Index

20
42
71

95

97
121
148
171
192

213

215
239
260
285
306
327

351

353
371
392

417

419
440
467

487

489
511
535
557

579

581
601
622
641

663
679

Part 1

Chapter 1

Chapter 2

Contents

Preface

Overview

Introduction

1.1 FAQs about software engineering
1.2 Professional and ethical responsibility

Key points
Further reading
Exercises

Computer-based system engineering

2.1 Emergent system properties

2.2 Systems and their environment
2.3 Systern modelling

2.4 The system engineering process

2.5 System procurement

14

17
18
18

20

22
24
26
29

37

xii Contents

Key points 39

Further reading 40

Exercises 40

Chapter 3 Software processes 42
3.1 Software process models 44

3.2 Process iteration 51

3.3 Software specification 55

3.4 Software design and implementation 56

3.5 Software validation 60

3.6 Software evolution 63

3.7 Automated process support 63

Key points 68

Further reading 68

Exercises 69

Chapter 4 Project management 71
4.1 Management activities 73

4.2 Project planning 75

4.3 Project scheduling 78

44 Risk management 84

Key points 90

Further reading 91

Exercises 92

Part 2 Requirements o -0h
Chapter 5 Software requirements 97
5.1 Functional and non-functional requirements 100

5.2 User requirements 106

5.3 System requirements 109

Contents xiii

5.4 The software requirements document 115

Key points 119

Further reading 119

Exercises 120

Chapter 6 Requirements engineering processes 121
6.1 Feasibility studies 123

6.2 Requirements elicitation and analysis 124

6.3 Requirements validation 137

6.4 Requirements management 139

Key points 145

Further reading 145

Exercises 146

Chapter 7 System models 148
7.1 Context models 150

7.2 Behavioural models 153

7.3 Data models 158

7.4 Object models 160

7.5 CASE workbenches 166

Key points 168

Further reading 169

Exercises 169

Chapter 8 Software prototyping 171
8.1 Prototyping in the software process 174

8.2 Rapid prototyping techniques 180

8.3 User interface prototyping 188

Key points 189

Further reading 190

Exercises 190

xiv Contents
Chapter 9 Formal specification 192
9.1 Formal specification in the software process 194
9.2 Interface specification 197
9.3 Behavioural specification 204
Key points 209
Further reading 210
Exercises 210
~ Part 3 Design 213
Chapter 10 Architectural design 215
10.1 System structuring 219
10.2 Control models 224
10.3 Modular decomposition 229
10.4 Domain-specific architectures 233
Key points 236
Further reading 237
Exercises 237
Chapter 11 Distributed systems architectures 239
11.1 Multiprocessor architectures 243
11.2 Client-server architectures 244
11.3 Distributed object architectures 249
11.4 CORBA 252
Key points 257
Further reading 258
Exercises 258
Chapter 12 Object-oriented design 260
12.1 Objects and object classes 262
12.2 An object-oriented design process 267

Contents xv

Chapter 13

Chapter 14

Chapter 15

12.3 Design evolution

Key points
Further reading
Exercises

Real-time software design

13.1 System design

13.2 Real-time executives

13.3 Monitoring and control systems
13.4 Data acquisition systems

Key points
Further reading
Exercises

Design with reuse

14.1 Component-based development
14.2 Application families
14.3 Design patterns

Key points
Further reading
Exercises

User interface design

15.1 User interface design principles
15.2 User interaction

15.3 Information presentation

15.4 User support

15.5 Interface evaluation

Key points
Further reading
Exercises

280

282
282
283

285

287
291
295 °
300

303
303
304

306

310
318
322

325
325
326

327

330
332
334
340
345

347
348
348

xvi Contents

Part 4 Critical Systems 351
Chapter 16 Dependability 353
16.1 Critical systems 356

16.2 Availability and reliability 359

16.3 Safety 364

16.4 Security 367

Key points 369

Further reading 369

Exercises 370

Chapter 17 Critical systems specification 371
17.1 Software reliability specification 373

17.2 Safety specification 379

17.3 Security specification 387

Key points 389

Further reading 389

Exercises 390

Chapter 18 Critical systems development 392
18.1 Fault minimisation 393

18.2 Fault tolerance 400

18.3 Fault-tolerant architectures 410

18.4 Safe system design 413

Key points 414

Further reading 415

Exercises 415

Part 5 Verification and Validation 417
Chapter 19 Verification and validation 419
19.1 Verification and validation planning 423

19.2 Software inspections 425

Contents xvii

19.3 Automated static analysis 431

19.4 Cleanroom software development 434

Key points 437

Further reading 438

Exercises 438

Chapter 20 Software testing 440
20.1 Defect testing 442

20.2 Integration testing 452

20.3 Object-oriented testing 458

20.4 Testing workbenches 462

Key points 464

Further reading 465

Exercises 466

Chapter 21 Critical systems validation 467
21.1 Formal methods and critical systems 469

21.2 Reliability validation 470

21.3 Safety assurance 476

21.4 Security assessment 483

Key points 484

Further reading 484

Exercises 485

Part 6 Management 487
Chapter 22 Managing people 489
22.1 Limits to thinking 490

22.2 Group working 497

22.3 Choosing and keeping people 503

xviii Contents
22.4 The People Capability Maturity Model 506
Key points 508
Further reading 509
Exercises 509
Chapter 23 Software cost estimation 511
23.1 Productivity 513
23.2 Estimation techniques 518
23.3 Algorithmic cost modelling 520
23.4 Project duration and staffing 531
Key points 533
Further reading 533
Exercises 534
Chapter 24 Quality management 535
24.1 Quality assurance and standards 539
24.2 Quality planning 544
24.3 Quality control 546
244 Software measurement and metrics 547
Key points 555
Further reading 555
Exercises 556
Chapter 25 Process improvement 557
25.1 Process and product quality 560
25.2 Process analysis and modelling 562
25.3 Process measurement 566
25.4 The SEl Process Capability Maturity Model 568
25.5 Process classification 573
Key points 576
Further reading 576
Exercises 577

