LNCS 3748

Alan Hartman
David Kreische (Eds.)

Model Driven
Architecture -
Foundations
and Applications

First European Conference, ECMDA-FA 2005
Nuremberg, Germany, November 2005
Proceedings

@ Springer

F Alan Hartman David Kreische (Eds.)

Model Driven
Architecture —
Foundations

and Applications

First European Conference, ECMDA-FA 2005
Nuremberg, Germany, November 7-10, 2005
Proceedings

3 -~ M (P 5% {
\ 1 RN Y

INHHIIIIIIHIIIHHI!lllllil

E200600961

| @ Springer

Volume Editors

Alan Hartman

IBM Haifa Research Laboratory

Model Driven Engineering Technologies
Haifa University Campus

Mt. Carmel, 31905, Haifa, Israel
E-mail: hartman @il.ibm.com

David Kreische

imbus AG

Kleinseebacher Str. 9, 91096 Moehrendorf, Germany
E-mail: david.kreische @imbus.de

Library of Congress Control Number: 2005935882

CR Subject Classification (1998): C.2,D.2,D.3,F3,C3, H4

ISSN 0302-9743
ISBN-10 3-540-30026-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30026-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11581741 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

" ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3748

Lecture Notes in Computer Science

For information about Vols. 1-3697

_ please contact your-bookseller or Springer

Vol. 3807: M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Kr-
ishnaswamy, Z. Pan, Q.Z. Sheng (Eds.), Web Information
Systems — WISE 2005 Workshops. XV, 275 pages. 2005.

Vol. 3806: A.H. H. Ngu, M. Kitsuregawa, E.J. Neuhold,
J.-Y. Chung, Q.Z. Sheng (Eds.), Web Information Systems
Engineering — WISE 2005. XXI, 771 pages. 2005.

Vol. 3799: A. Rodriguez, I.E.Cruz, S. Levashkin (Eds.),
GeoSpatial Semantics. X, 259 pages. 2005.

Vol.3793: T. Conte, N. Navarro, W.-m.W. Hwu, M. Valero,
T. Ungerer (Eds.), High Performance Embedded Architec-
tures and Compilers. XIII, 317 pages. 2005.

Vol. 3792: 1. Richardson, P. Abrahamsson, R. Messnarz
(Eds.), Software Process Improvement. VIII, 215 pages.
2005.

Vol. 3791: A. Adi, S. Stoutenburg, S. Tabet (Eds.), Rules
and Rule Markup Languages for the Semantic Web. X,
225 pages. 2005.

Vol. 3790: G. Alonso (Ed.), Middleware 2005. XIII, 443
pages. 2005.

Vol. 3789: A. Gelbukh, A. de Albornoz, H. Terashima-
Marin (Eds.), MICAI 2005: Advances in Artificial Intel-
ligence. XX VI, 1198 pages. 2005. (Subseries LNAI).

Vol. 3785: K.-K. Lau, R. Banach (Eds.), Formal Methods
and Software Engineering. XIV, 496 pages. 2005.

Vol. 3784: J. Tao, T. Tan, R.W. Picard (Eds.), Affective
Computing and Intelligent Interaction. XIX, 1008 pages.
2005.

Vol. 3781: S.Z. Li, Z. Sun, T. Tan, S. Pankanti, G. Chollet,

D. Zhang (Eds.), Advances in Biometric Person Authen-
tication. XI, 250 pages. 2005.

Vol. 3780: K. Yi (Ed.), Programming Languages and Sys-
tems. X1, 435 pages. 2005.

Vol. 3779: H. Jin, D. Reed, W. Jiang (Eds.), Network and
Parallel Computing. XV, 513 pages. 2005.

Vol. 3777: O.B. Lupanov, O.M. Kasim-Zade, A.V.
Chaskin, K. Steinhofel (Eds.), Stochastic Algorithms:
Foundations and Applications. VIII, 239 pages. 2005.

Vol. 3775: J. Schonwiilder, J. Serrat (Eds.), Ambient Net-
works. XIII, 281 pages. 2005.

Vol. 3773: A.S. Cortés, M.L. Cortés (Eds.), Progress in
Pattern Recognition, Image Analysis and Applications.
XX, 1094 pages. 2005.

Vol. 3772: M. Consens, G. Navarro (Eds.), String Process-
ing and Information Retrieval. XIV, 406 pages. 2005.

Vol. 3770: J. Akoka, S.W. Liddle, 1.-Y. Song, M.
Bertolotto, I. Comyn-Wattiau, W.-J. van den Heuvel, M.
Kolp, J.C. Trujillo, C. Kop, H.C. Mayr (Eds.), Perspectives
in Conceptual Modeling. XXII, 476 pages. 2005.

Vol. 3768: Y.-S. Ho, H.J. Kim (Eds.), Advances in Mulit-
media Information Processing - PCM 2005, Part II
XXVIII, 1088 pages. 2005.

Vol. 3767: Y.-S. Ho, H.J. Kim (Eds.), Advances in
Mulitmedia Information Processing - PCM 2005, Part 1.
XXVIII, 1022 pages. 2005.

Vol. 3766: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 231
pages. 2005.

Vol. 3765: Y. Liu, T. Jiang, C. Zhang (Eds.), Computer
Vision for Biomedical Image Applications. X, 563 pages.
2005.

Vol. 3764: S. Tixeuil, T. Herman (Eds.), Self-Stabilizing
Systems. VIII, 229 pages. 2005.

Vol. 3762: R. Meersman, Z. Tari, P. Herrero (Eds.), On the
Move to Meaningful Internet Systems 2005: OTM Work-
shops. XXXI, 1228 pages. 2005.

Vol. 3761: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part II. XXVII, 653 pages. 2005.

Vol. 3760: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part I. XXVII, 921 pages. 2005.

Vol. 3759: G. Chen, Y. Pan, M. Guo, J. Lu (Eds.), Parallel
and Distributed Processing and Applications - ISPA 2005
Workshops. XIII, 669 pages. 2005.

Vol. 3758: Y. Pan, D. Chen, M. Guo, J. Cao, J. Dongarra
(Eds.), Parallel and Distributed Processing and Applica-
tions. XXIII, 1162 pages. 2005.

Vol. 3757: A. Rangarajan, B. Vemuri, A.L. Yuille (Eds.),
Energy Minimization Methods in Computer Vision and
Pattern Recognition. XII, 666 pages. 2005.

Vol. 3756: J. Cao, W. Nejdl, M. Xu (Etis.), Advanced Par-
allel Processing Technologies. XIV, 526 pages. 2005.

Vol. 3754: J. Dalmau Royo, G. Hasegawa (Eds.), Man-
agement of Multimedia Networks and Services. XII, 384
pages. 2005.

Vol. 3753: O.F Olsen, L.M.J. Florack, A. Kuijper (Eds.),
Deep Structure, Singularities, and Computer Vision. X,
259 pages. 2005.

Vol. 3752: N. Paragios, O. Faugeras, T. Chan, C. Schnorr
(Eds.), Variational, Geometric, and Level Set Methods in
Computer Vision. XI, 369 pages. 2005.

Vol. 3751: T. Magedanz, E.R. M. Madeira, P. Dini (Eds.),
Operations and Management in IP-Based Networks. X,
213 pages. 2005.

Vol. 3750: J.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part II. XL, 1018 pages. 2005.

 Vol. 3749: J.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part I. XXXIX, 942 pages. 2005.

Vol. 3748: A. Hartman, D. Kreische (Eds.), Model Driven
Architecture — Foundations and Applications. IX, 349
pages. 2005.

* Vol. 3747: C.A. Maziero, J.G. Silva, AM.S. Andrade,
FEM.d. Assis Silva (Eds.), Dependable Computing. XV,
267 pages. 2005.

Vol. 3746: P. Bozanis, E.N. Houstis (Eds.), Advances in
Informatics. XIX, 879 pages. 2005.

Vol. 3745:J.L. Oliveira, V. Maojo, F. Martin-Sénchez, A.S.
Pereira (Eds.), Biological and Medical Data Analysis. XII,
422 pages. 2005. (Subseries LNBI).

Vol. 3744: T. Magedanz, A. Karmouch, S. Pierre, 1. Ve-
nieris (Eds.), Mobility Aware Technologies and Applica-
tions. XIV, 418 pages. 2005.

Vol. 3740: T. Srikanthan, J. Xue, C.-H. Chang (Eds.),
Advances in Computer Systems Architecture. XVII, 833
pages. 2005.

Vol. 3739: W. Fan, Z.-h. Wu, J. Yang (Eds.), Advances
in Web-Age Information Management. XXIV, 930 pages.
2005.

Vol. 3738: V.R. Syrotiuk, E. Chévez (Eds.), Ad-Hoc, Mo-
bile, and Wireless Networks. XI, 360 pages. 2005.

Vol. 3735: A. Hoffmann, H. Motoda, T. Scheffer (Eds.),
Discovery Science. XVI, 400 pages. 2005. (Subseries
LNAI).

" Vol. 3734: S. Jain, H.U. Simon, E. Tomita (Eds.), Algo-
rithmic Learning Theory. XII, 490 pages. 2005. (Subseries
LNAI).

Vol. 3733: P. Yolum, T. Giingér, F. Giirgen, C. Ozturan
(Eds.), Computer and Information Sciences - ISCIS 2005.
XXI, 973 pages. 2005.

Vol. 3731: E. Wang (Ed.), Formal Techniques for Net-
worked and Distributed Systems - FORTE 2005. XII, 558
pages. 2005.

Vol. 3729: Y. Gil, E. Motta, V. R. Benjamins, M.A. Musen
(Eds.), The Semantic Web — ISWC 2005. XXIII, 1073
pages. 2005.

Vol. 3728: V. Paliouras, J. Vounckx, D. Verkest (Eds.), In-
tegrated Circuit and System Design. XV, 753 pages. 2005.

Vol. 3726: L.T. Yang, O.F. Rana, B. Di Martino, J. Don-
garra (Eds.), High Performance Computing and Commu-
nications. XXVI, 1116 pages. 2005.

Vol. 3725: D. Borrione, W. Paul (Eds.), Correct Hardware
Design and Verification Methods. XII, 412 pages. 2005.

Vol. 3724: P. Fraigniaud (Ed.), Distributed Computing.
X1V, 520 pages. 2005.

Vol. 3723: W. Zhao, S. Gong, X. Tang (Eds.), Analysis and
Modelling of Faces and Gestures. X1, 4234 pages. 2005.

Vol. 3722: D. Van Hung, M. Wirsing (Eds.), Theoretical
Aspects of Computing — ICTAC 2005. X1V, 614 pages.
2005.

Vol. 3721: A. Jorge, L. Torgo, P.B. Brazdil, R. Camacho, J.
Gama (Eds.), Knowledge Discovery in Databases: PKDD
2005. XXIII, 719 pages. 2005. (Subseries LNAI).

Vol. 3720: J. Gama, R. Camacho, P.B. Brazdil, A. Jorge,
L. Torgo (Eds.), Machine Learning: ECML 2005. XXIII,
769 pages. 2005. (Subseries LNAI).

Vol. 3719: M. Hobbs, A.M. Goscinski, W. Zhou (Eds.),
Distributed and Parallel Computing. XI, 448 pages. 2005.

Vol. 3718: V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov
(Eds.), Computer Algebra in Scientific Computing. XII,
502 pages. 2005.

Vol. 3717: B. Gramlich (Ed.), Frontiers of Combining Sys-
tems. X, 321 pages. 2005. (Subseries LNAI).

Vol. 3716: L. Delcambre, C. Kop, H.C. Mayr, J. Mylopou-
los, O. Pastor (Eds.), Conceptual Modeling — ER 2005.
XVI, 498 pages. 2005.

Vol. 3715: E. Dawson, S. Vaudenay (Eds.), Progress in
Cryptology — Myerypt 2005. X1, 329 pages. 2005.

Vol. 3714: H. Obbink, K. Pohl (Eds.), Software Product
Lines. X111, 235 pages. 2005.

Vol. 3713: L.C. Briand, C. Williams (Eds.), Model Driven
Engineering Languages and Systems. XV, 722 pages.
2005.

Vol. 3712: R. Reussner, J. Mayer, J.A. Stafford, S. Over-
hage, S. Becker, P.J. Schroeder (Eds.), Quality of Soft-
ware Architectures and Software Quality. XIII, 289 pages.
2005.

Vol. 3711: E. Kishino, Y. Kitamura, H. Kato, N. Nagata
(Eds.), Entertainment Computing - ICEC 2005. XXIV,
540 pages. 2005.

Vol. 3710: M. Barni, 1. Cox, T. Kalker, H.J. Kim (Eds.),
Digital Watermarking. XII, 485 pages. 2005.

Vol. 3709: P. van Beek (Ed.), Principles and Practice of
Constraint Programming - CP 2005. XX, 887 pages. 2005.

Vol. 3708: J. Blanc-Talon, W. Philips, D.C. Popescu, P.
Scheunders (Eds.), Advanced Concepts for Intelligent Vi-
sion Systems. XXII, 725 pages. 2005.

Vol. 3707: D.A. Peled, Y.-K. Tsay (Eds.), Automated Tech-
nology for Verification and Analysis. XTI, 506 pages. 2005.

Vol. 3706: H. Fuks, S. Lukosch, A.C. Salgado (Eds.),
Groupware: Design, Implementation, and Use. XII, 378
pages. 2005.

Vol. 3704: M. De Gregorio, V. Di Maio, M..Frucci, C.
Musio (Eds.), Brain, Vision, and Artificial Intelligence.
XV, 556 pages. 2005.

Vol. 3703: F. Fages, S. Soliman (Eds.), Principles and
Practice of Semantic Web Reasoning. VIII, 163 pages.
2005.

Vol. 3702: B. Beckert (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. XIII, 343 pages.
2005. (Subseries LNAI).

Vol. 3701: M. Coppo, E. Lodi, G. M. Pinna (Eds.), Theo-
retical Computer Science. XI, 411 pages. 2005.

Vol. 3700: 1.E. Peters, A. Skowron (Eds.), Transactions on
Rough Sets IV. X, 375 pages. 2005.

Vol. 3699: C.S. Calude, M.J. Dinneen, G. Pdun, M.
J. Pérez-Jiménez, G. Rozenberg (Eds.), Unconventional
Computation. XI, 267 pages. 2005.

Vol. 3698: U. Furbach (Ed.), KI 2005: Advances in Artifi-
cial Intelligence. XIII, 409 pages. 2005. (Subseries LNAI).

Fho. 382

Preface

The European Conference on Model Driven Architecture - Foundations and Ap-
plications (ECMDA-FA) is a new conference dedicated to the study and in-
dustrial adoption of the model-driven approach to software engineering. It has
grown out of a number of workshops and smaller conferences in the area of model
driven development and model driven architecture (MDAT™). The conference is
dedicated to providing a forum for cross fertilization between the European soft-
ware industry and the academic community. We aim to present the industrial
experience and highlight the pain points of industry in order to promote fo-
cused academic research that will bring real value to society. At the same time,
we hope to challenge industry leaders to conduct a realistic appraisal of the
emerging technologies presented by academics, consultants, and tool vendors,
and eventually to adopt the model driven approach.

The conference provides both a forum for the papers judged as being of the
highest quality and a venue for workshops, tutorials and tool exhibitions on
model driven software engineering. This year, we are host to five workshops and
four tutorials in subject matter ranging from the highly theoretical to the prac-
tical industrial aspects of MDA and a tool exhibition featuring nine commercial
and seven open source or academic tools. This volume contains nine papers from
the applications track and fifteen from the foundations track, chosen from 82 sub-
mitted papers. These works provide the latest and most relevant information on
model driven software engineering in the industrial and academic spheres.

I would like to express my thanks to all the members of the steering commit-
tee, the program committee, and the referees, who gave freely of their time and
wisdom to make this conference a success. The ECMDA-FA is supported by the
European Commission’s Information Society Technologies (IST) initiative, and
by the Object Management Group (OMG).

November 2005 Alan Hartman

Program Chair
ECMDA-FA’2005

Steering Committee

Program Chair:

Local Arrangements Chair:

Workshop Chair:

Tools and Tutorials Chair:

Organization

Alan Hartman (IBM)
David Kreische (imbus AG)
Arend Rensink (Twente U)
Jos Warmer (Ordina)

Uwe Assman (Dresden TU)
Asier Azaceta (ESI)

David Akehurst (Kent U)

Programm Committee

Jan Aagedal
Mehmet Aksit
Sergio Bandinelli
Mariano Belaunde
Jean Bezivin
Xavier Blanc
Manfred Broy
Krzysztof Czarnecki

Miguel A. de Miguel Bran Selic

Philippe Desfray Marten van Sinderen
Reiko Heckel Gerd Wagner

James J. Hunt James Willans
Jean-Marc Jezequel Jim Woodcock

Anneke Kleppe
Richard Paige
Bernhard Rumpe

Additional Reviewers

Andreas Bauer
Machiel van der Bijl
Peter Braun

Phil Brooke

Maria Victoria Cengarle

Anthony Elder
Eitan Farchi
Boris Gajanovic
Adrian Giurca
Roy Grgnmo
Hans Gronniger
Wilke Havinga

Jan Jiirjens Sergey Olvovsky
Dave Kelsey Jonathan Ostroff
Mila Keren Fiona Polack
Andrei Kirshin Gerhard Popp
Holger Krahn Martin Rappl
Sergey Lukichev Julia Rubin

Keith Mantell Thomas Rofiner
Frank Marschall Martin Schindler
Tor Neple Yael Shaham-Gafni
Dimitrios Kolovos Zoe Stephenson

Shiri Kremer-Davidson Alexander Wiipeintner
Jon Oldevik

Table of Contents

MDA Development Processes

Applying MDA to Voice Applications: An Experience in Building
an MDA Tool Chain
Maria José Presso, Mariano Belaundec.c...

MDA, Meta-Modelling and Model Transformation: Introducing New
Technology into the Defence Industry
Tony Bloomfleld cqouiiininearinrasinnesinevssosensnssosnosss

Using Domain Driven Development for Monitoring Distributed Systems
Rainer Burgstaller, Egon Wuchner, Ludger Fiege, Michael Becker,
Thomas Fritz

MDA for Embedded and Real-Time Systems

Model-Driven Architecture for Hard Real-Time Systems: From
Platform Independent Models to Code
Sven Burmester, Holger Giese, Wilhelm Schifer

Model-Driven Performance Analysis of UML Design Models Based
on Stochastic Process Algebra
Naoshi Tabuchi, Naoto Sato, Hiroaki Nakamura

MDA Components: A Flexible Way for Implementing the MDA
Approach

Reda Bendraou, Philippe Desfray, Marie-Pierre Gervais

MDA and Component-Based Software Engineering

An MDA Approach for Adaptable Components
BRI OBl «.sn v s s w5 masm s mnie s uvmmnis piaers nors b o 50§ s e

Layered Ontological Modelling for Web Service-Oriented Model-Driven
Architecture
Claus Pahl

Model-Driven Development — Hot Spots in Business Information
Systems
Bernhard Humm, Ulf Schreier, Johannes Siedersleben

VIII Table of Contents
Metamodelling

Semantic Anchoring with Model Transformations

Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, Ethan Jackson

On Some Properties of Parameterized Model Application

Alexis Muller, Olivier Caron, Bernard Carré, Gilles Vanwormhoudt . .

A Comparative Study of Metamodel Integration and Interoperability
in UML and Web Services

Athanasios Staikopoulos, Behzad Bordbar

Control Flow Analysis of UML 2.0 Sequence Diagrams
Vahid Garousi, Lionel C. Briand, Yvan Labiche

Designing a Domain-Specific Contract Language: A Metamodelling
Approach

Zhan En Chan, Richard F. Paige ...iiosveivses snsmnsniinessevsos

Making Metamodels Aware of Concrete Syntax
Frédéric Fondement, Thomas Baar

Model Transformation

XRound: Bidirectional Transformations and Unifications Via a
Reversible Template Language

Howard Chivers; Richard F. Paige .:usiuvsninssinssmeonsinesssess

Towards General Purpose, High Level, Software Languages

Anneke KIeppeo

Toward Standardised Model to Text Transformations

Jon Oldevik, Tor Neple, Roy Grgnmo, Jan Aagedal, Arne-J. Berre . ..

On Relationships Between Query Models
Dominik Stein, Stefan Hanenberg, Rainer Unland

Transformations Between UML and OWL-S

Roy Grgnmo, Michael C. Jaeger, Hjordis Hoff

A Graphical Specification of Model Transformations with Triple Graph
Grammars

Lars Grunske, Leif Geiger, Michael Lawley........................

115

130

145

160

190

220

239

Table of Contents
Model Synchronization and Consistency

Horizontal Transformation of PSMs
Jamal Abd-Ali, Karim El Guemhioutc.ccuiiiiuiinn. ..

Automatic Support for Traceability in a Generic Model Management
Framework

Artur Boronat, José A. Carst, Isidro Ramos
Synchronizing Cardinality-Based Feature Models and Their
Specializations

Chang Hwan, Peter Kim, Krzysztof Czarnecki

Author Index

IX

Applying MDA to Voice Applications:
An Experience in Building an MDA Tool Chain

Maria José Presso and Mariano Belaunde

France Telecom, Div. R&D,
2, Av Pierre Marzin, 22307 Lannion, France
{mariajose.presso, mariano.belaunde}@francetelecom.com

Abstract. Before a development project based on MDA can start, an important
effort has to be done in order to select and adapt existing MDA technology to
the considered application domain. This article presents our experience in
applying MDA technology to the voice application domain. It describes the
iterative approach followed and discusses issues and needs raised by the
experience in the area of building MDA tool chains.'

1 Introduction

Interactive voice-based applications are specific telephony applications that are
designed to allow end-users to interact with a machine using speech and telephone
keys in order to request a service. The interaction — called a dialog —typically consists
of a state machine that executes the logic of the conversation and that is capable of
invoking business code which stands independently of the user interface mechanism
— could be web, batch or speech-based. Because state-machines can be specified and
modelled formally, it is possible to design a tool chain that automates large amounts
of the dialog implementation. The application of model-driven techniques to this
domain is without any doubt very promising. However, the question that arises is
about the methods and the cost of building a complete environment capable of taking
full advantage of models: not only ensuring automated code production but also
offering user-friendly interfaces to designers, model simulation and test generation.

A general methodology for MDA-based development has been defined in [1]. The
authors define the main phases, and make a distinction between preparation and
execution activities: execution activities refer to actual project execution, during
which software artefacts and final products are produced, while preparation activities
typically start before project execution, and setup the context that allows the reuse of
knowledge during the project. The preparation activities can be seen as selecting and
adapting existing generic MDA technology in order to define an MDA approach for
the considered application domain and provide an appropriate tool chain.

' The work presented here has been partially carried out within the MODELWARE project.

MODELWARE is a project co-funded by the European Commission under the "Information
Society Technologies" Sixth Framework Programme (2002-2006). Information included in
this document reflects only the author's views. The European Community is not liable for
any use that may be made of the information contained herein.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 1 -8, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 M.J. Presso and M. Belaunde

Whereas [1] gives a general description of preparation activities and their chaining,
there is currently little or no guidance available for them. In the current state of MDA
technologies, these preparation activities demand an important effort which is not paid
of by the first project and should be shared among a set of projects within the same
domain. In particular, preparation has an impact on the first application project that
follows it, as this first project necessarily requires iterations in the preparation activities.

This work presents our experience in building an MDA approach for the voice
application domain and finishes by a discussion on the encountered issues and expectations.

2 MDD Preparation for the Voice Application Domain

According to [1], the preparation activities are divided into the preliminary
preparation phase, the detailed preparation phase, and the infrastructure set-up
phase. The preliminary preparation comprises the identification of the platform, the
modelling language identification, the transformation identification and the
traceability strategy definition. Detailed preparation comprises specification of
modelling languages and specification of transformations. Infrastructure setup
includes tool selection and metadata management.

In our project, these activities where performed in an iterative and incremental
way, in order to better suit the needs of the users of the MDD environment involved
in the execution phases, like voice dialog design, business application coding and
functional testing. These users apply the tool facilities constructed by the preparation
activities to produce the voice applications (the tool facilities are described later).

The preparation took place in three main stages. In each phase, some preparation
activities were executed, together with some validation activities involving future
users of the tool-chain, mainly service designers. The rest of this section presents the
stages we followed.

2.1 Stage 1: Definition

In the first part of this stage, the current process of voice application creation was
analysed and the integration of MDD techniques to this process was studied in order
to identify the requirements for the voice development environment (VDE).

From this study, the following roles and their corresponding scenarios of use of the
VDE were identified:

— the service designer uses the VDE model editor and simulator to model and
simulate iteratively the dialogs of the application,

— the usability practitioner uses the VDE simulator to perform usability
expertise on the dialogs of the service and he uses the VDE model editor to
correct the dialog model,

— the internal customer (project owner) uses the VDE simulator a prototype of
the service, to validate dialog design,

— the service implementer implements the service in the target platform, ideally
by completing the skeletons generated by the modelling tool,

— the service validator produces the conformance test cases using the VDE test
generation tool.

Applying MDA to Voice Applications 3

In order to serve as a conceptual basis for the VDE, a meta-model for platform
independent modelling of voice applications was defined and UML 2 was chosen as a
concrete syntax. Thus, a UML 2 profile for voice application models was defined?.

Although the choice of UML for the concrete syntax may seem obvious, UML 2
being "the" modelling language standard, we will see later that this choice induces a
significant cost in the infrastructure setup phase. For this reason, it is important to
recall the rationale behind his choice:

e Voice application logic can easily be assimilated to a reactive state machine: the
application reacts to user input such as voice and telephone keys, and produces
output for the user: the vocal messages. The concepts of states and transitions
are used in the voice application meta-model and supported by UML.

e Voice applications usually interact with the enterprise's information system. As
UML is used as a modelling language in the information system domain, using
the same language for voice applications allows to seamlessly integrate
information system models with voice application models.

e Communication services are becoming integrated and multimodal. The use of a
standard, largely used notation is expected to favour future integration with
other services and modalities.

e Existing modelling tools and skills can be reused.

Also at this stage, the architecture of the VDE was defined (see Figure 1) and some of
the tools involved were selected. A UML tool was chosen to play the role of model
editor and model repository and the criteria for its selection were defined. Among the
criteria defined, the ones that differentiated the tools were : i) the support for UML 2
transition oriented syntax for state machines (this notation had been found easier to
read by users than the state oriented syntax), ii) the support for rigorous syntax
checking (in particular for actions) and iii) model simulation/execution capabilities.
TAU G2 from Telelogic was chosen as modelling tool.

Following this first round of preparation activities, we conducted some
experiments in order to determine the ability of the profile to capture the intended
service logic, verify that service designers could feel comfortable with the tool and to
identify the necessary adaptations to the modelling tool (i.e. specific functionalities
necessary to better support the voice application profile). These experiments consisted
in modelling some existing services with the proposed profile and tool. Modelling
was initiated by a modelling expert and a service designer working in pairs and
finished by the service designer.

As a result of this phase, we could see that the proposed profile captured most of
the necessary elements to describe a voice application, but it should be enhanced to
support executable modelling of messages and the definition of grammars for voice
recognition. Designers (who are not modelling experts) could get familiar with the
modelling tool with a fair amount of effort. The main need for tool adaptation that
came up was that a high level of support for the specification of messages allowing to
reuse message parts, as well as facilities to read them during the dialog specification
task. Also, high level commands for the creation of the other domain elements should

% This profile was later used as a basis for a submission to the OMG's RFP for a Metamodel
and UML Profile for voice applications [3].

4 M.J. Presso and M. Belaunde

be available (such as creating a dialog). The restitution of the specification in the
form of a document should be optimized in order to limit its volume and improve
readability, hyperlink navigation should be available in the documents.

|/ -simulate dialog
execution on the
PC

+Create execution
\._scenarios "

P
(-Stock and

retrive service
descriptions

A

/

™~

«Describe service
functions and business !
objects

+Describe and validate

~diglog / +Generation
elements for
= . execution
*Produce dialog plateform : code
specification / sque|§mns, dialog
documents descriptors, etc.

S~ A

Fig. 1. Architecture of the MDD Voice Development Environment (VDE)

2.2 Stage 2: VDE Development — Iteration 1

The second stage consisted mainly in the development of a first version of the tool
chain, offering assistance for the creation of dialog modelling elements (dialogs,
messages, recognition interpretation concepts, etc.), documentation generation and a
limited form of dialog simulation. This version was developed using scripting and
code generation capabilities provided by the modelling tool. Concretely, it appears as
a plug-in to the modelling tool and a separate telephone-like GUI connected to a text
to speech engine, that allows the designer to execute the dialog logic of the modelled
service and evaluate its appropriateness, its €rgonomics, etc.

After the development of this first version, a second row of experiments took
place, which consisted in using the tool chain to enhance the service models produced
in the first stage, and use the document generation and simulation functionalities for
this models.

Although this first version of the tool chain was very promising and showed that useful
functionality for service creation could be offered, it presented some limitations: the GUI
for modelling assistance that could be developed through scripting was limited and not
satisfying from the point of view of ergonomics; the service simulation was not able to
propose the possible inputs in a given situation, neither to go arbitrarily back and forth into
the execution tree. The scripting technique used for development posed maintainability
issues and was not appropriate to support a growing software.

At the same time, studies where carried out about simulation and test generation
for voice services. This studies showed that existing simulation technologies based

Applying MDA to Voice Applications 5

on the IF language[2] provided the necessary level of support to build a simulator for
voice services that overcomes the limitation of the method employed in the first
version.

At the end of this stage the decision was taken to build a more industrial version of
the tool chain based on a programming language (rather than scripting), to offer richer
GUI capability in particular for message creation, and to provide the service
simulation functionality through model simulation techniques, rather than code
generation.

2.3 Stage 3: VDE Development — Iteration 2

This stage started by the definition of the architecture for the modelling tool plug-in,
and the choice of the implementation technology. The main characteristic of this
architecture was the definition of a layer that provides a view of the underlying UML
model in the terms of the voice application metamodel. This layer implements an on-
the-fly bi-directional transformation between UML and the voice application
metamodel. This layer provides an adapted API and is used as a basis to develop the
GUI and a set of generators that implemented various model transformations. Also,
the architecture proposed a way for simple integration of the different generators in
the plug-in. The generators provided at this stage were:

e document generators, which produce documents according to different
templates and in html and MS Word formats. These generators use an
intermediate XML generation phase, followed by XSLT transformations,

e an XMI generator, which exports the model in the terms of the voice application
metamodel. This generator uses the adaptation layer API, and was
automatically generated (and re-generated as needed) from the voice application
metamodel,

e a generator that produces an IF model for service simulation and test generation,
a code generator having as target an n-tier architecture using VoiceXML. The
generated code executes in the application server tier and produces on-the-fly
the presentation pages in VoiceXML. The generated code integrates in a
framework (which was also developed in this phase), that provides the basis for
the execution of a dialog state machine and VoiceXML generation.

The first three generators above were directly integrated into the plug-in, in order to
facilitate the installation of the toolkit in the user's workstation and its use by the
service designers, while the last on is external and uses the results of the XMI export.
Something important to note about this stage is that the metamodel was called to
change often, as the implementation of transformations asked for corrections or
improvements. As different transformations were developed in parallel, the changes
asked by one of them had an impact on the others.

2.4 Stage 4: Pilots

The last stage is that of pilot projects. These are the first projects using the MDD
chain (in the terms of [1], the first runs of the "execution" phase). The stage is still in
progress at the time of writing. During this phase, iteration with preparation activities

6 M.J. Presso and M. Belaunde

goes on, mainly to adapt the code generator to the project's target platform and to add
extra functions asked by the pilot projects. An important effort in this stage is spent
on user training and support.

3 Discussion

The result of the preparation activities described in the previous section is a process
and a tool chain providing a high degree of automation. Starting from the PIM model,
the tool chain produces automatically a simulation of the dialog, functional test cases,
and the executable code for the dialog logic, and a is good representative of the MDA
vision. However, these activities consumed an important effort, that should be shared
by several projects. In this section we briefly discuss some of the issues and
expectations that come from our experience in building this MDA tool chain.

In our experiment, we encountered a strong user's demand to have a rich GUI for
modelling in terms of the domain vocabulary. This appeared as a critical issue for the
adoption of the tool chain. As UML had been chosen as a concrete syntax, this request
lead to important extensions to the modelling tool in the form of a plug-in. The ability
to extend the modelling tool using a full-fledged programming language was
necessary to develop the required GUI and to apply good engineering practices (such
as the MVC pattern) to this development.

The above issue comes to the famous problem of whether a general-purpose
modelling tool should be specialized or whether the tool should be built from scratch.
Beyond tool usage is the question whether the specific language for the considered
domain — in our case voice dialog definition — has to be built on top of an existing
language — like UML, or a new language should be defined - typically using MOF or
an XML schema. It is easy to adhere to the principle of maintaining the distinction
between the abstract syntax (the domain metamodel) and the concrete syntax (given
by a UML profile or a textual notation) since it provides potentially much more
freedom — ability to use various concrete syntaxes - and is more comfortable for
domain designers — since the vocabulary used is directly the one of the domain.
However, as our experiment has demonstrated, maintaining this distinction potentially
induces a high cost to the development of the tool chain. In our experiment, we used
an "API adaptation” technique which allows to program a specific GUI and model
transformations within the UML tool by using an API dedicated to the domain
metamodel — instead of using the general-purpose UML-based API. This technique
presents interesting advantages from the engineering point of view : i) the knowledge
about the mapping between UML and the domain metamodel is localized, ii)the
coding of the GUI is simplified, since the complexity of UML is hidden iii) the model
transformations can be implemented in domain terms and are thus facilitated, and iv)
the XMI generator exporting the model in the voice metamodel terms can be
produced and updated automatically from the metamodel itself. However, one of the
important problems encountered at this level was the instability of the metamodel,
which in general changed more often than the graphical and the textual notation.
Ideally, to solve the instability problem, the mapping between the metamodel and the

