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PREFACE

The theory of non-linear dynamical systg.ms has taken vety much a segond pllxw
the development and refinement of that of lmez systqgms over much of this century,
in spite of a great deal of early pioneering work in the field by Polincaré, Bw/j(hoff and
others. A background level of research continued, ag exemplified, for instance, by
the work of Hopf in 1940 and later work by Krylov on mixing properties of ergodic
systems, and the ‘rich variety of behaviour, some of it very bizarre” found by
Cartwright and Littlewood for the foreed Van der Pol oscillator in 1943 However, it
was not until the late 1950s and 1960s that the field really gathered momentum. In
this period, work was typified by that of Kolmogorov, Armnold and Moser for:
Hamiltonian systems, that of Henon.and Smale for more general diffeomorphisms,
that of Faddeev, Marchenko, Kruska! agd othegs in inverse sgattering and, also, as
the power of numerical computation increased dramaticafly, that of Lorenz in 1963
in the area of deterministig chgos in dissipative non-fincar systems. These all led the
way for very rapid recent dcvelc'pmems. notably enhanced by universal features
discovered in the routes to chaos.

The extensive use of Poincaré sections pointed out clmly the fractal nature of the
strange attractors that underlie these chaotic motions, as alsc did various calcula-
tions of fractal dimension from numerical data. Related aspects are thekuterplay of
deterministic chaos and stachastic noise, and the development of methods to
distinguish them in experimental data. Another subject which has become a focus
of attention in recent years is the rise of chgotic behavieurin quantum systems, and
the features that characterise and limit th¢ manifestations of chaos in quantum
systems in comparison with classical systems.

This volume contain3 the invited contributions presented at a special seminar on
the topics of Chaos, Noise and Fractals, generoysly funded by the London Branch of
the US Government Office of Naval Research, to whom we express our gratitude on
behalf of the participants. We also inclade two other contributions which were
unable to be presented at the meeting begpuse of the crowded programme, but whose
authors were kind enough to provide manuscripts for these progeedings. The
seminar was held at Villa Olmo, Como, Italy, 18 - 19 Sgptember 1986, immediately
prior to a NATO Advanced Researgh Workshop on Quantum Chaos. The
Proceedings of the Workshop will be published separately by Plenum Publishing
Corporation, and the reader may benefit from considering the two volumes
together.

We would like to thank Professor Juilio Casati and the staff of the Centre for
Scientific Culture in Villa Olmo for their work in helpifig to organise the meeting.
The participants enjoyed not only the presentations and the stimulgting discussions
in a friendly atmosphere, but also the magnificent location, which represents an
ideal marriage between natural landscape and human architecture. We are grateful
to Jane Zeuli and Gerda Wolzak for their enthusiastic and invaluable work during
the two meetings, and also to Mrs Zeuli for considerable help with this publication
afterwards.
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It is a great pleasure to present this new volume in the Malvern Physics Series, and
we express our appreciation to Adam Hilger, particularly Mr J Revill for their
efficient assistance in its preparation.

E R Pike
L A Lagiato

&

January 1987



LIST OF CONTRIBUTORS

H ADACHIHARA Department of Mathematics
University of Arizona
Tucson
Arizona 85721
USA

FTARECCHI Istituto Nazionale di Ottica
Largo E Permi
6-50125 Firenze
Italy

M BRAMBILLA Dipartimer:to di Fisica
Universita di Milano
Via Celoria 16
20133 Milano
Italy

D SBROCMHEAD Centre for Theoretical Studies
Royal Signals and Radar Establishment
St Andrews Road
Malvern
Worcestershire WR14 3PS
UK

H J CARMICHAEL Department of Physics
University of Arkansas
104 Physics Building
Fayetteville
Arkansas 72701
USA

G CASATI Dipartimento di Fisica
Universita di Milano
Via Celoria 16
20133 Milano
Italy

B ECKHARDT Institut fiir Festkorperphysik
Kernforschungsanlage
D-5170 Jiilich
FRG



X LIST OF CONTRIBUTORS

M FEINGOLD

H FRAHM

T GEISEL

RJONES

G PKING

P LKNIGHT

James Franck Institute
University of Chicago
5640 Ellis Avenue
Chicago

Illinois 60637

USA

Institut fiir Theoretische Physik
Technische Universitat Hannover
Appelstrasse 2

D-3000 Hannover

FRG

Institut fiir Physik 1
Theoretische Physik
Universitit Régensburg
Universitit Strasse 31
Regensberg

FRG

RSRE MOD(PE)

St Andrews Road
Malvern

Worcestershire WR14 3PS
UK

Royal Signals and Radar Establishment
St Andrews Road

Malvern

Worcestershire WR14 3PS

UK

and
A A

Departtherit of Mathematics
Impertal Cdlfege

Blackett Laboratory
London SW7 2BZ

UK

Department of Physics
Blackett Laboratory
Imperial College
London SW7 2BZ

UK



LIST OF CONTRIBUTORS

L ALUGIATO

D WMCLAUGHLIN

PMEYSTRE

HJMIKESKA

J VMOLONEY

LM NARDUCCI

A CNEWELL

SJDPHOENIX

xi

Dipartimento di Fisica
Politecnico di Torino

c.so Duca Degli Abruzzi 24
10129 Torino

Italy

Department of Mathematics
University of Arizona
Tucson

Arizona 85721

USA

Optical Sciences Center
University of Arizona
Tucson

Arizona 85721

USA

Institut fiir Theoretische Physik
Technische Universitdt Hannover
Appelstrasse 2

D-3000 Hannover

FRG

Department of Physics
Heriot-Watt University
Riccarton

Edinburgh EH14 4AS
UK

Department of Physics and Atmospheric Sciences
Drexel University

Philadelphia

Pennsylvania 19104

USA

Department of Mathematics
University of Arizona * ~
Tucson

Arizona 85721

USA

Department of Physics
Blackett Laboratory
Imperial College
London SW72BZ

UK



xii LIST OF CONTRIBUTORS

ERPIKE

G RADONS

JRUBNER

SARBEN SARKAR

JSSATCHELL

Department of Physics
King’s College

Strand

London WC2R 2LS
UK

and

Centre for Theoretical Studies

Royal Signals and Radar Establishment
St Andrews Road

Malvern

Worcestershire WR14 3PS

UK

Institut fiir Physik 1
Theoretische Physik
Universitédt Regensburg
Universitat Strasse 31
Regensberg

FRG

Institut fir Physik 1
Theoretische Physik
Universitadt Regensburg
Universitat Strasse 31
Regensberg

FRG

Centre for Theoretical Studies

Royal Signals and Radar Establishment
St Andrews Road

Malvern

Worcestershire WR14 3PS

UK

Centre for Theoretical Studijes

Royal Signals and Radar Establishment
St Andrews Road

Malvern

Worcestershire WR14 3PS

UK

and



LIST OF CONTRIBUTORS

G STRINI

F VIVALDI

EM WRIGHT

Clarendon Laboratory
University of Oxford
Parks Road

Oxford OX1 3PU

UK

Dipartimento di Fisica
Universita di Milano
Via Celoria 16

20133 Milano

Italy

Department of Mathematics
Queen Mary College

327 Mile End Road

London E1 4NS

UK

Optical Sciences Center
University of Arizona
Tucson

Arizona 85721

USA

xiii



CONTENTS

Preface
List of Contributors

Hyperchaos and 1/f Spectra in Nonlinear Dynamics
F T Arecchi

* ‘Bfngular System Analysis with Application to Dynamical Systems
D S Broomhead, R Jones, G P King and E R Pike

A Review of Progress in the Kicked Rotator Problem
G Casati

Fractals in Quantum Mechanics!?
B Eckhardt

Ergodic Semiclassical Quantum Mechanics
M Feingold

Cantori and Quantum Mechanics
T Geisel, G Radons and J Rubner

Influence of Phase Noise in Chaos and Driven Optical Systems
L A Lugiato, M Brambilla, G Strini and L M Narducci

Chaos in the Micromaser
P Meystre and E M Wright

Chaos in a Driven Quantum Spin System
H J Mikeska and H Frahm

Fixed Points and Chaotic Dynamics of an Infinite Dimensional Map
J V Moloney, H Adachihara, D W McLaughlin and A C Newell

The Arithmetic of Chaos
FVivaldi

Limitations of the Rabi Model for Rydberg Transitions
P L Knight and S J D Phoenix

Quasi-probability Distributions in Astable Dissipative Quantum Sys. .

J S Satchell, Sarben Sarkar and H J Carmichael

Index

vii

15
28
o
55
76
86

102

17

137

187

200,

222

247



HYPERCHAOS AND 1/f SPECTRA IN NONLINEAR
DYNAMICS

F T ARECCHI

1. INTRODUCTION

In the middle 1300 the following problem has been
attributed to Johannes Buridanus, a philosopher at the
Univérsity of Paris. Suppose é donkey is Jjust halfway between
two equivalent choices (e.g. two food baskets that we call F1
and F2). What will be its decision? In the solution
attributed to Buridanus the donkey dies, having no elements
to decide for either solution. The current modern solution,
upon which most of statistical bhysics is built, 1is 1wmore
optimistic. The initial condition between the two choices is
an unstable one, likf the maximum x=0 in a quartic potential
well V(x)s—ax2+bx4 (a,b>0) and it would be left immediately
once the donkey (taken as a materfal point initially at x=0)
is coupled to the rest of the Universe, which provides for a
thermal bath including fluctuations (even at zero temperature
there would be quantum flunctuations).

Let us model the fluctuations as an additive white noise
(no memory) source. If we use, @ discrete time approach and
introduce an uncertainty ax per step (the donkey's feet have
a finite size), there 1is a single time scale 1, that
corresponding to the average first passage time through 4x.
Afterwards, because of the "~ uniqueness theorem for the

solution of a differential problem, noise will not play any



2 HYPERCHAOS AND 1/f SPECTRA

extrarole and the donkey will go either to F1 or F2. The time
scale 1 provides an exponential decay of correlations, that
is, of the memory of the initial uncertainty and an

associated Lorentzian power spectrum
G(w) ¥ e (1)

As well known a log-log of (1) has two asymptotic straight
1iﬁes, a high frequency one with a slope -2 (20 db/decade)
and a horizontal one for low frequency, corresponding to lack
of correlations (white spectrum)}. The two lines cross at
w=1/t . The long time lack of correlation is the basis of
all Markoffian approaches to statistical physics.

Buridanus' solution would be then wrong, since the donkey
does not die but it performs a decision with a definite time
scale.

These considerations where the basis of an approach to
decay of unstable states motivated by an early experiment on
a transient laser (Arecchi et al, 1967 and 1971) and then
formalized in a general procedure (Arecchi et al, 1980 and
1982a) .

If, however, still with the same two-valley potential
(bistable solution) and in the presence of a white noise, we
increase the number of degrees of freedom up to 3 in order to
allow for a chaotic dynamics, then we observe experimentally,
the possibility of Jjumps back and forth from a decision to
the other one.

Aim of this paper is to show that this is equivalent to
provide Buridanus'donkey with a fractal boundary between the
two cholces. Indeed an irregular rugged boundary can be
crossed from several directions, and it will provide a large
number of length scales rather than a single one 4 x, and

hence a large number of time scales. This will be equivalent
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to the superposition of many Lorentzians specfra as (1), thus
providing a power spectrum utterly different from a
Lorentzian one. The donkey will keep a long memory of the
initial wuncertainty and it might die as expected Dby
Buridanus.

In the following we approach the problem with reference to
chaotic dynamics, offering a solution in terms of an

elementary model.

2. NOISE INDUCED TRAPPING AT THE BOUNDARY BETWEEN TWO
ATTRACTORS

Addition of random noise in a nonlinear dynamical system
with more than one attractor may 1lead to 1/f spectra,
provided that the basin boundary be fractal (Arecchi and
Califano, 1986). Combining the features leading to
deterministic chaos with a random noise is somewhat
equivalent to a double randomness and we call "hyperchaos"
such a situation. Indeed random-random walks in ordinary
space, as diffusion in disordered systems, have shoewn a 1/f
behavior (Sinai, 1982; Marinari et al, 1983). Thus,
hyperchaos here introduced is a random-random walk in phase
space, where 1in fact one of the two sources of complex
behavior 1is due to the fractal structure arising from.
deterministic dynamics.

To evaluate the impact of the following arguments, "1
'aemls?ueame historical remarks on 1/f spectra in nonlinear
dynami &

SOm’Wyoars ago it was discovered (Arecchi and Lisi, 1982)
that in a nonlinear dynamical system with more than one
attractor, introduction of random noise induces a hopping

between different basins of attraction, giving rise to a low

®



4 HYPERCHAOS AND 1/f SPECTRA

frequency spectral divergence, resembling the 1/f noise well
known in many areas of physics (Fig. 1). Such a discovery was

confirmed by a laser experiment implying two coexisting

ogs| (b
a8l x (c)
20/
|
10 t
5 SHz 18 14
Figure 1
Electronic non 1linear forced oscillator obeying the law
X+ X - ax + bx' = Acos(2w ft). Hopping between two
attractors and associated 1/f spectrum in the purely bistable
case. (a) Symmetric phase-space plots; (b) log-log spectrum

showing the low frequency divergence, a broadened f/8 line,
and a narrow f£/4 line; (c) a sample of the x(t) plot.

attractors (Arecchi et al, 1982b) (Fig. 2), and later the
effect was observed in other areas as e.g. Josephson tunnel
junctions (Miracky et al, 1983).

The effect was questioned with two objections:

a) a noise 1induced jump across a boundary leads to a
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telegraph signal, hence to a single Lorentzian spectrum

(Beasley et al, 1983); - v
b) a computer experiment yielded a power law only over a

limited spectral range (Voss, 1983).

The questions were answered (Arecchi and Lisi, 1983) with
a statement of the empirical conditions under which the 1/f
spectra appeared, namely:

i) coexistence of at least two attractors (so called "
generalized multistability'" (Arecchi et al, 1982b)),
ii) presence of noise;
iii) some "strangeness" in the attractors.
As a matter of fact this third condition was rather vague. To
make it more precise, two theoretical models were explored,
namely, a one dimensional cubic iteration map with noise
(Arecchi et al, 1984a) and a forced Duffing equation with
noise (Arecchi et al, 1984B; Arecchi et al, 1985a). Both
thege papers. disclose interesting features, bringing more
light on the above assumption iii). Fig. 2 of Arecchi et al
1984a shows that the size of the 1/f spectpal region
iri¢reases with the r.m:s. of the apg&ied noise, tnad ig, with
the probability of ‘grossing the Dbasin bdundary by a
noise-induced Jjump. : ” :

The numerical eval@é}iun of Arecchi et al 1984b and
Arecchi et al 1985a shqwed that- for some control parameters
the¢ boundary between bqéins of attractioﬁ was an intricated
set of points, through which it was impossible to draw a
gimple line. In such cases the noise was most effective in
yielding 1ow‘freduency spectra 1/f-1like.

Oﬁ the other hand a fundamental logical approach to the
1/f préblem was based oh the composition of « large number of
Lorehtzians (or elementary Markov processes with exponential
decay) whose weights are log-normally distributed (Montroll
and Shlesinger, 1982), thus fulfilling the relation

y A
v
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Y2

l ’
Y x
—_— y)dy= const.x
‘[YI“’Z"'Yz B L ¢ w (2)
provided p(y) ~ ¥y , and for the frequency range y,®u<y, .
A A
g
’ oz
n
1 L

twin f

log S
(dB)

40

20

25 SO 10 (Hz)logt

Figure 2
Bistability in a CO2 laser with 1loss modulation. (a,b)
coexistence of two attractors (period 3 and 4 respectively)
high frequency spectrum around 100KHz, (c¢) comparison between
the low frequency cut-off when the two attractors are stable
(dashed line) and the low frequency divergence when noise is
added (solid line).

Motivated by the rate processes considerations, which yielded
a single Lorentzian for two attractcrs, we developed a
kinetic model (Arecchi et al, 1984a) based on a single
transition rate for each pair of attractors. In the case of M
attractors, this yielded M-1 Lorentzians. To approximate the

integral (2) by a sum (5% accuracy in fitting a 1/f law would



