


Advanced
Programming
for the Oric

Gerard Mason

McGRAW-HILL Book Company (UK) Limited

London - New York - St Louis - San Francisco - Auckland - Bogota
Guatemala - Hamburg - Johannesburg - Lisbon - Madrid - Mexico
Montreal - New Delhi - Panama - Paris - San Juan - Sao Paulo
Singapore - Sydney - Tokyo - Toronto



Published by
McGRAW-HILL Book Company (UK) Limited

MAIDENHEAD - BERKSHIRE - ENGLAND

British Library Cataloguing in Publication Data

Mason, Gerard
Advanced programming for the Oric
1. Oric 1 (Computer)
I. Title
001.64'04 QA76.8.07

ISBN 0-07-084745-2
Library of Congress Cataloging in Publication Data

Mason, Gerard.
Advanced programming for the Oric.
Bibliography: p.
Includes index.
1. Oric 1 (Computer) — Programming. 2. Basic (Computer program
language) I. Title.
QA76.8.068M37 1984 001.64'2 84-12557

ISBN 0-07-084745-2

Copyright © 1984 McGraw-Hill Book Company (UK) Limited.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of McGraw-Hill Book Company (UK) Limited.

12345 CUP 8654

Printed in Great Britain at the University Press, Cambridge



ADVANCED PROGRAMMING FOR THE ORIC




PREFACE

In some books for Oric an attempt is made to rewrite the manual.
Other books tell you how to make little green aliens appear, and
then how to zap them. Few if any show you how you can use your
computer in ways that really stretch it; how to make it do useful
work; how to learn about computers and about music, art and
mathematics while still having fun. Until now.

In this book the author aims to give you programs which are
useful, interesting, educational, and entertaining in their own
right, but which will also show you how to tackle a project of
medium complexity with every chance of success by firstly
defining the problem and then breaking it up into smaller parts
which, on their own, are easy to solve. He aims also to make you
familiar with the key concepts of several fields so that you will be
able to formulate interesting projects to solve, particularly with
regard to music and graphics.

As some of the programs are quite long there is a cassette
available which contains most of the programs in the book. Also,
those programs which run slowly in BASIC have had sections
rewritten in machine code for speed. All programs can be listed,
and the machine code sections are accompanied by a disassembly
as well as comments in order to make them easy to understand.

vii



Cassette
Software. . .

A cassette containing a selection of
programs and utilities for the book,
including a full version of ‘Curse of
the Mummy’ is available at good
bookshops or software stores.

In cases of difficulty, write direct to

the publishers at the address below

for full details of contents, price, and
mail order service.

NO STAMP NEEDED!

The Software Editor,
McGraw-Hill Book Company (UK) Limited,
FREEPOST, Maidenhead, Berkshire, SL6 2BU.




CONTENTS

Preface

Chapter 1 Characters and text

1.1 Strings

1.2 The ASCII code
1.3 Number Cruncher
1.4 The character set

Chapter 2 Low resolution graphics

2.1 The teletext display

2.2 Draughts

2.3 The TEXT and LORES displays
2.4 The alternate character set

2.5 Drawing in LORES 1

2.6 Draw

Chapter 3 Numbers

3.1 Types of number
3.2 Trigonometry
3.3 Biorhythms

3.4 Arrays

3.5 Logic

Chapter 4 Highresolution graphics

4.1 The commands

4.2 The choice

4.3 Simple graphics

4.4 Shape tables and matrices
4.5 Three-dimensional graphics
4.6 Maths and graphs

vii

15

33

54



Chapter 5 Music 78

Background

The commands

The choice

Trio

All-singing
All-dancing
Three-part harmony

A
BN oo T NIUVH Nl

Chapter 6 Inside Oric 106

6.1 Introductory

6.2 The memory map
6.3 Anatomy of a micro
6.4 The RAM

Chapter 7 Playing the game 121

About adventure games. Graphics adventure games;
Curse of the Mummy: supervisor, initialization, drawing
a room, decorating a room, plotting an object, entering a
command, picking up an object, dropping an object,
attacking, shooting, bow and arrow, scoring, moving
around, obstacles, fireworks, storing room descriptions

Appendix A: Binary numbers 147
Appendix B: Keyword codes 152
Appendix C: The ASCII 7-bit code 154
Appendix D: Further reading 155
Index 156

vi



1 CHARACTERS AND
TEXT

1.1 Strings
A string is a sequence of characters, which may be letters, digits,
punctuation marks, graphics symbols — even commands to

perform actions such as turning the cursor off. The teletext
attributes can also be held as strings.

Oric will accept anything you can put between quotation marks
as a valid string.

A variable of the form A$, B7$, or AZ$ can be used to stand for a
string. Anywhere you could have typed the string you can use the
variable. Remember, though, that only the first two characters in
the variable’s name are used to identify it so Oric will treat
NAMES$ and NAVYS$ as the same:

NAME$=“Nelson”:NAVY$=“British :PRINT
NAMES$:PRINT NAVYS$

British

British

1.1.1. ForMATTING

Notice how in the example above the strings were printed on
separate lines. You can stop this by putting a semicolon (;) after
the string or string variable in the PRINT statement. A comma
does the same with the added effect that it will introduce four
spaces between the items:

PRINT NAME$;NAVY$
BritishBritish

PRINT NAME$,NAVYs
British British

1.1.2. Pror

Using the PLOT command you can specify exactly where a

character or a string will appear.
The basic form of the command is PLOT, X,Y,Z, where X is the
distance across the screen (@to 38, left to right) and Y is the

1



distance down (@ to 26). Z is the code for the character to appear,
and can be between @) and 255.

X, Y, and Z can be calculated as well as specified explicitly. For
instance,

FOR N=3TO 9:PLOT N*3,N+2,N+65:NEXT

There are other ways of saying exactly what is to be plotted.
Instead of Z you can say CHR$(Z), and even complete strings. So if
M$=“Honest Oric” then both

PLOT 9,9,M$ and PLOT 9,9,“Honest Oric”
will put the string onto the screen, starting at 9,9 and ending at
19,9.

1.1.3 STRING OPERATORS

To help in managing strings there are a number of words which
deserve a brief description.

LEN() with either a string in quotes or a string variable
between the brackets will return the length of that string. So if
A$=“STRINGY” then the command A=LEN(A$) will make A
equal 7. PRINT LEN(“BACON”) will result in a 5 being printed.

VAL() returns the value of a string, so VAL(“123”) is 123.
VAL(“XY?Z”) is zero.

STR$() works in the other direction. So if X=456 then
A$=STR$(X) will have the same effect as A$=“456". Notice that
there is a space at the beginning (on the Atmos; Oric 1 has
CHR$(2) instead) so that A$ is actually four characters long. This
has the unfortunate effect that VAL(A$) here is zero! There are
ways to get around this.

CHR$() turns code numbers into characters, according to the
ASCII code. It works with numbers from @to 255 inclusive,
though those below 32 have special functions and those above 127
are mostly repeats of the others.

Three more important words are LEFT$, MID$, and RIGHT$
which slice strings into parts in the way their names suggest.

If A$=“ABCDEF” then we can use LEFT$ to extract a
certain number of the left-most characters. For instance,
B$=LEFT$(A$,3) will set BE=“ABC”. The number can be § — in
which case B$ would be empty — or it can be greater than the
length of A$ — in which case B§=AS$.

Right-hand slices can be made in the same way. Typing
C$=RIGHT$(A$,3) makes C$=“DEF”.

The most useful of the three is MID$. It gives a string starting
at a certain position, of a certain length. So D$=MID$(A$,2,3)

2



makes D$=“BCD”: three characters of A$ starting at position two.

We can use MID$ to get rid of the difficulty with STR$. If
A=1789 then we set T$=STR$(A), so that T$=“789”. Then simply
make A$=MID$(T$,2), after which A$=“789”. Notice that
leaving out the length number from MID$ makes it assume that
we want the whole thing. Now VAL(A$) is 789.

You can stick two or more strings together using +. If A$=“abc”
and B$=“xyz” then C$=A$+B$ will make C$=“abexyz”.
Similarly, D$=A$+“"+B$ makes D$="“abc xyz”.

< and > compare strings alphabetically. < means ‘is before’ and
> means ‘is after’. So “AAA” < “AAB” and “CZ” < “D”.

1.2. The ASCII code

This is the American Standard Code for Information Interchange,
and associates characters with numbers. It is used by CHR$() and
< and >. There is a copy of the table in Appendix C on page 153,
but if ever you need to know what the ASCII code of a character is,
the word ASC() will do it for you. ASC(“A”) is 65, ASC(“B”) is 66,
and so on.

As you can see if you look at the table, some numbers are
associated with actions rather than shapes. So PRINT CHR$(12)
will clear the screen. Characters below 32 can be included in
strings, soif AS=CHR$(12)+“Hi there!” then PRINT A$ will clear
the screen before printing the message. Try A$=“Mary had little
lamb”+CHR$(10)+ CHR$(13)+“its fleece was white as snow”.
PRINT AS$.

1.2.1 CiPHERS

Itis easy to get Oric to play about with the ASCII values of a string
in order to produce an enciphered version. For example, if
A$=“The enemy has retreated” we can produce an enciphered
version with:

B$=“":A$=“The enemy has retreated”

FOR N=1 TO LEN(A$):B$=B$+CHR$(ASC(MID$(A$,N)
)+1):NEXT

All this does is add 1 to the value of each letter, so that T becomes
U, hisnowi, eisf, and so on. Print out B$.

This little program produces a very secure encipherment of an
input string. It is based on the fact that Oric’s random-number
generator is in fact anything but random! It starts the generator
off in line 2Q) with a negative number. Each number produced

3



after that can be duplicated by starting it off once again with the
same negative number. You simply choose a number to encipher a
message and use the same one to decipher it. This forms the ‘key’.
The same message will be enciphered differently if a different key
number is used!

10 INPUT "Code Number ":N

15 INPUT "En/Decipher ";C$%
20 R=RND(-MN):C=1

25 IF Cs="D" THEN C=-1

IO INPUT T%:FRINT " "3

35 FOR F=1 TO LEN(T%)

40 T=ASCMIDE(T%.F))-ASC("A")
45 IF T<0 THEN 60 “only encipher letters
S0 T=T+INT(RND (1) x2&)xC

55 T=T-INT(T/26)X26

60 FRINT CHR$(T+ASC("A")):

65 NMEXT:FRINT:PRINT:G0TO ZO

The code number can be any positive number, including decimals;
thus 1.2345 is just as good as, but different from, 12345. One
further interesting feature is that superencipherment is possible.
Just take the first encipherment and feed it in again. Obviously,
the text must also be deciphered twice!

1.3 Number Cruncher

Here is a program to show some of the truly amazing uses to which
strings can be put. It is the first major program in the book.

One of the principle failings of small computers is that they
cannot deal accurately with very large or very small numbers.
The program has been designed to deal with this problem. You
can add, subtract, multiply, divide, and raise to powers whole
numbers of up to 255 digits, without loss of accuracy. [ have given
it a flavour of the FORTH programming language in the method
of entering numbers and commands. If you understand how to use
it, and it is not difficult, you will have made a good start towards
mastering FORTH.

On running the program the “?” prompt appears. This means it
is ready for a number or a command. Suppose you want to find 23
times 24. Type 23 24 * . and press RETURN. Oric will immediately
answer +552 followed by “OK”, and the prompt reappears. When
entering numbers you must leave at least one space after each

4



one. You can insert as many spaces as you like, or even enter each
number on a new line.

Obviously, the answer you got was the same as if you had typed
PRINT 23%24 using ordinary BASIC. So why does the asterisk
come after the second number and what does the full stop mean?

The answer is contained in the fact that the program, like
FORTH, uses a stack for its arithmetic. A stack is just another
way to store numbers, with the property that the last number
onto the stack is the first one off. The spring-loaded devices used in
cafes to store plates are an example of a stack in action. See Fig.
1.1 for an illustration of what happens when two numbers are
pushed onto a stack and then popped off it.

F Y 21 49 21 y
t 21 }

3

Figure 1.1

However, when we ran the program we multipled the numbers
and printed the answer. Figure 1.2 shows what happened: the “*”
popped the top two numbers, multiplied them, and pushed the
result back onto the stack. The “.” popped the top number and
printed it.

23 34 * .
1 23 34 782 3
t 23 b
A
Figure 1.2

Note that it is not necessary for the stack to have only two
numbers on it for “*” or one number for “.”; it is merely necessary
for it to have at least that many. Notice also that printing a
number removes it from the stack.

Since the program is fairly long it has been written in modules
so that you only need to type one in when you want it. For this
reason, type them in the order given, since later ones use earlier
ones as subroutines.

The first module is concerned with setting up the program, and
entering numbers and commands.



100 CLS:GRAB:HIMEM #B400

105 Z$="0":Z=ASC(Z%$):T=10

110 S$=" ":E$="":MAX=120

115 P=0:DIM ST% (MAX)

120 REPEAT: INPUT I%

125 T$=LEFT$(I$,1):IF T$=E$ THEN 295
130 IF T$=5¢% THEN 215

135 IF T#$<Z% OR T%$>"9" THEN 160

140 N=0:REPEAT:N=N+1

145 UNTIL MID$(I$,N,1)=5% OR N>LEN(I%)
150 AF$=LEFT$(I$,N-1):I$=MID$(I%,N)
155 GOSUB 410:60T0 315

160 IF P=0 THEN 290

165 Y$=ST$(P-1)

170 IF T#="=" THEN 470
175 IF T#$="-" THEN 490
180 IF T$="." THEN 515

185 IF P=1 THEN 290

190 P=F-2: X$=ST$(P):5T$(P)=E%

195 ST (P+1)=E$:F=FRE("")

200 IF T$="\" THEN 35325

205 X=44-ASC (X$) : Y=44-ASC(Y%$)

210 X$=MID$(X$,2):F=FRE("")

215 Y$=MID$(Y$,2):F=FRE("")

220 IF T$<>"+" THEN 23

225 GOSUB S560: X$=E$: Y$=E$: X=44—-X

230 F=FRE(""):60SUB 445:060T7T0 215

233 IF T$<>"%x" THEN 230

240 GOSUB 650:605UB 445:60T7T0 215

250 IF T$="/" 0OR T$="%4" OR T$="1" THEN 733

280 IF T%="1" THEN 200

285 PRINT "Input Error”:60T0 295

290 FRINT "Stack Underflow"

293 PRINT "OK":F=FRE(""):UNTIL FALSE

Z00 :

100 : Owners of 16K machines should set HIMEM to #34%) and
set MAX=9in line 110.

The module scans input strings to see if they are numbers or
sequences of commands. Line 160 checks to see that the stack has
at least one operand for the operations of “=" (duplicate number
on top-of-stack), “—” (negate top-of-stack), and “.” (print top-of-
stack). From now on I shall call the number on the top of the stack
10S, the number below it 20S, the one below that 308S, etc.

6



Line 185 checks that there are at least two numbers on the
stack for the operations of “\” (swap 10S and 20S around), “+” (add
10S and 208), “*”, “/” (divide 20S by 10S), “%” (find the remainder
on dividing 20S by 10S), and “” (find the quotient and remainder),
and “ 1 ” (raise 20S to the power of 10S).

The next block consists of five subroutines split into two distinct
groups: find the next item in the input string and add a number to
the stack. The second of these is the longer and comprises the
basic housekeeping routine of the entire program.

210 REM get next item in I%
315 I$=MID$(I%,2):6G0TO 125

- -
s -

225 REM increment the stack pointer
330 IF P<MAX THEN P=P+1:RETURN
335 FRINT "Stack Overflow"

240 POP:POF:G0TO 285

Z45 :

Z50 REM remove leading zeros

3595 AS$=7Z%+A%$: REPEAT

I60 F=FRE("") :A$=MID% (A%, 2)

365 UNTIL LEN(A$)=1 OR ASC(AS$) >Z
I70 RETURN

375 :

380 REM check digits

385 REPEAT:F=ASC (MID%$ (A%,N) ) :N=N-1
I20 UNTIL N=0O OR F<Z OR F>(Z+9)
Z95 RETURN

400 :

405 REM add a number to the stack
410 X=ASC("+")

415 N=LEN(A%):605UB 385

420 IF N=0O THEN 4435

425 POP:PRINT:PING: PRINT A%

430 FOR J=0 TO N-1

435 PRINT S$; : NEXT

440 PRINT "4":PRINT:G0TO 285

445 GOSUB 330:605UB 355

450 ST$(P—1)=CHR$ (X)+A$

455 A$=E$:F=FRE("") : RETURN

460 =

Next come the stack operations proper. They are an
intermediate level between the housekeeping routines and the

7



arithmetical ones. The options are to duplicte the current top-of-
stack, negate it, print it, and swap it with the number

immediatley below it (20S). The operations are invoked by “=7,

K M w»

, “.”, and “\” respectively (see Fig. 1.3).

+123 +123 +123 +123
7Y 7'y 7Y

+789

Before
- _ e
+123 123 I +789
+123 1 +123
After
Figure 1.3

465 REM duplicate T0OS

470 GOSUB 330:5T$(P-1)=Y$
475 Y$=E$:F=FRE(""):60T0 215
480 :

485 REM negate TO0OS

490 T$=CHR% (88-AS5C(Y$))

495 ST$(P—-1)=T$+MIDS (Y%, 2)
500 F=FRE(""):60TO 315

505 :

510 REM print TOS

515 P=P-1:PRINT Y$:5T%(P)=E%
520 Y$=E$:F=FRE(""):60T0 315
525 =

530 REM swap TOS and 20S

535 ST$(P)=Y$:Y$=ES$

5S40 ST$(P+1)=X%$: X$=E$

545 F=FRE(""):P=P+2:60T0 315
550 =

Here is the first of the arithmetical routines — addition. It can
also be used for subtraction; simply negate the number you want
to subtract and then add it. So 789—123 becomes 789+(—123).
The routine is called by the multiplication and power routines.

8



555
560
565
370
078

380
585

590
595
600
605
610
615
620
6235
630
635
640

REM addition subroutine

S=XXxY:C=0: A%=E$:F=FRE (" ")
L=LEN(X%)-LEN(YS$)

IF L>0 THEN 380

IF X$<Y$% OR L<0 THEN H#$=X%: X$=Y&: Y$E=HS:
X=Y:L=-L:H$=E$:F=FRE("")

FOR N=LEN(Y$) TO 1 STEP -1

D=VAL (MID$(Y$,N, 1)) ¥S+VAL (MID$ (X$,N+L,
1)) +C

C=(D<0 OR D>9)%x-S5:D=D-10xC

A$=CHR$ (D+Z)+A$:F=FRE (" ") : NEXT
X$=LEFT$(X$,L): IF C=0 THEN &35

IF L=0 THEN &30

REPEAT: D=VAL (RIGHT$ (X%,1))+C

C=(D<0 OR D>?2)%x-S:D=D—-10x%C:L=L-1
A$=CHR$ (D+Z) +A$: X$=LEFT$ (X$,L)
F=FRE(""):UNTIL X$=E%$ OR C=0

IF C THEN A$="1"+A%$

A$=X$+A%: RETURN

The routine always adds the smaller number to the larger. If
they are both negative or both positive this makes no difference,
but it is vital if they are of different signs.

56

570 —

590

S=1 if the numbers are both positive or both negative, so
that corresponding digits are added in line 585. If they are
of different signs then S=-1 and one is subtracted from
the other. C is the carry.

575: These lines make sure that the smaller number is
added to the larger.

Adjusts if a digit would be above 9 or below ) and makes
carry=1 or borrow=-1 as appropriate.

600ff: The first part stops when all the digits of the smaller

number have been added, so that if the sum is
1234567890987654321+1 then only one addition is
made. The second part takes over if there is still a carry at
this stage, so that an addition such as 99999999999 +1 is
done correctly.

Now for the multiplication routine. It performs a long
multiplication in a way similar to that used when doing it

by hand.

645 REM multiplication subroutine
650 M=XXY:S=1:L=LEN(X$)-LEN(Y%)



