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; beyond the classical theory, yet stopping
- | ﬂ’ummtmuous (and to some distracting) ramifications.

: 'Roundiy speakmg, integration with respect to a local martingale with
continuous paths is the primary object of study here. We have decided
to include some results requiring only right continuity of paths, in order
to illustrate the general methodology. But it is possible for the reader to
skip these extensions without feeling lost in a wilderness of generalities.
Basic probability theory inclusive of martingales is reviewed in Chapter
1 bly prepared reader should begin with Chapter 2 and consult
Chamer“l only when needed. Occasionally theorems are stated without
proof but the treatment is aimed at self-containment modulo the in-
evitable prerequisites. With considerable.regret I have decided to omit
a discussion of stochastic differential equations. Instead, some other ap-
plications of the stochastic calculus are given; in particular Brownian
local time is treated in detail to fill an unapparent gap-in the literature. .
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T?le 'd;)ﬁlichtions to storage theory diseussed in Section 8.4 are based
on lectures given by J. Michael Harrison in my class. The material in
Section 8.5 is Ruth Williams’s work, which has now culminated in her
dissertation [32].

At, the start of my original lectures, I made use of Métivier’s lecture
notes [21] for their ready access. Later on I also made use of unpublished
notes on continuous stochastic integrals by Michael J. Sharpe, and on
local time by John B. Walsh. To these authors we wish to record.our
indebtedness. Some oversights in the references have been painstakingly
corrected here. We hope any oversight committed in this book will
receive similar treatment.

A methodical style, due mainly to Ruth Williams, is evident here. It
is not always easy to strike a balance between utter precision and relative
readability, and the final text represents a compromise of sorts. As a
good author once told me, one cannot really hope to achieve consistency
in writing a mathematical book—even a small book like this one.

K. L. Chung

December 1982
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PRELIMINARIES

1.1 Notations and Conventions

For each interval I in IR = (—o00,00) let B(I) denote the o-field of
Borel subsets of I. For each t € IR, = [0,00), let B; denote B([0,t])
and let B denote B(IR;) =Vier, Bt — the smallest. o-field containing
B, for all t in IR,. Let IR, = [0,00] and B denote the Borel o-field of
IR, generated by B and the singleton {cc}. Let X\ denote the Lebesgue

measure on IR.

Whenever t appears without qualification it denotes a generic ele-
ment of IR,. The collection {z;,t € IR, } is frequently denoted by {z.}.
The parameter ¢ is sometimes referred to as time.

Let IN denote the set of natural numbers, INy denote IN U {0},
and N, denote®{IN} U {oo}. Wheneve k, or m, appears without
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qualification, it denotes a generic element of IN. A sequence {Zp,n € IN}
is frequently denoted by {z,}. We write z, — when {z,} converges to
z. A sequence of real numbers {z,} is said to be increasing (decreasing)
e <woui @ > Zn41) for all n. The notation z, 1 = (zn | T)
means {z,} is increasing (decreasing) with limit z.

For each d € IN, the components of z € IR® are denoted by z;,
1 < i < d, and the Euclidean norm of z by |z| = (Eg___l (zi)z)i.

The symbol 14 denotes the indicator function of a set A, i.e.,
14z) =tz €A and = 0if £ ¢ A. The symbol @ denotes the
empty set.

For each n, C*(IR) or simply C™ denotes the set of all real-valued

~ continuous functions defined on IR for which the first n derivatives exist

and are continuous. We use C(IR) to denote the set of real-valued

continuous functions on IR and C*(IR) or C* to denote NperwC" the
set of inﬁnitely differentiable real-valued functions on IR.

7 R {54 .

We use the words “positive”, “negative”, increasing”, and “decreas-
ing”, in the loose sense. For example, “z is positive” means e > 0"
the qualifier “strictly” is added when “z > 0” is meant. The infimum of
an empty set of real numbers is defined to be co. A sum over an empty
index set is defined to be zero.

1.2 Measurability. and I” Spaces

Supposé (S,X) is a measurable space, consisting of a non-empty set
S and a o-field ¥ of subsets of S. A function X : S - R? is called
¥-measurable if X ~1(A) € X for all Borel sets A in R?, where X!
denotes the inverse image. A similar definition holds for a function X3
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1.2. Measurability and 1” Spaces ‘ 3 .

8 » IR = [~00,00|. We use “X € ¥” to mean “X is Y-measurable”
and “X € bY” to mean “X is bounded and L-measurable”.

If T is a sub-family of £, a function X : § — IR? is called I'-simple
if X = Y %_, ckla, for some constants c in IR, sets A, €T, and n €
IN. Such a function is T-measurable. Conversely, any Y-measurable
function is a pointwise limit of a sequence of Y-simple functions. For
example, a $-measurable function X : § — IR is the pointwise limit of
the sequence {X"} of E-simple functions defined by

n2"

i fpn. gn Lk <X <(k+1)27"}
k=0

—n2"
k+1
+ Z ( on )l{kz-"5x<(k+1)2-n)
k=-1

and |[X™| 1 |X|. In the above we have suppressed the argument of X,
as we often do in the text.

Suppose v is a (positive) measure on (S, ¥). A set in ¥ of v-measure
zero is called a v-null set. For p € [1,00), LP(S, %, v) denotes the vector
space of X-measurable functions X : S — IR for which

>0

1 llp= ( / |X(s)r"u(ds))

8

" js finite. We use “v-a.e.” to denote “v-almost everywhere”. If functions
‘which are equal v-a.e. are identified, then L*(S,%,v) is a Banach space
with norm || - ||, In the case p = 2, it is also a Hilbert space with',
 inner product ( - , - ) given by (X,Y) = Js X(s)Y(s)v (ds) for X and
" Y in L%(S, T, v). Whenever we view these spaces in this way, it will be
implicit that we are identifying functions which are equal v-a.e.
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1.3 Functions of Bounded Variation and Stieltjes Integrals

For a real-valued function g on IRy, the variation of g on [0,¢] is
given by

n—1 :
lgle = SUP(ZIQ(tkH)—Q(tk)‘)
k=0

where the supremum is over all partitions 0 =tp < t; < ... <tp =t
of [0,t]. The variation |g|; is increasing in t. If |g|¢ <oo, g is said to
be of bounded variation on [0,t]. If this is true for all t in Ry, g is
said to be locally of bounded variation on IR ; and if sup,c p, 9]t <oo,
then g is of bounded variation on IR . A (continuous) function is locally
of bounded variation on IR, if and only if it is the difference of two
(continuous) increasing functions (see Royden [25, p.100]).

A function g which is locally of bounded variation on IR, induces a
signed measure u on the o-field B, where 3

w((a, b)) = g(b) — g(a) for @ < b in R, and pu({0}) = 0.

The measure  is uniquely determined by the above since intervals of
the form (a, b] together with {0} generate B. It is a positive measure if g
is increasing and has no atoms if g is continuous. The variation |u| of
is the measure associated with the variation |g|. If f € L'([0,t], B, |ul),
then the Lebesgue:Stieltjes integral of f with respect to g over [0,¢] is
defined by :

' / 1(5) dgls) = / fdu

(0,¢] [0,¢]
g — k B k+1 )
— nlinoxo (ki . 5;-#({8 €[o,¢: b <if(8) € o }/

+ _Z: (k;l)u({se [0,2] : 2k—n L (8) % k;‘l}))

k=-—1
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and | f[o,:] f(s)dg(s)| < f[O,t]' f |d|u|. If the last integral is finite for all ¢ €
[0, T) and g is continuous, then f[o,t] f(s) dg(s) is a continuous function of

t € [0, T) and we denote it by f(: f(s)dg(s). If f is a continuous function
on [0, ], then the Riemann-Stieltjes integral of f with respect to g on
[0, ¢] is well-defined and equals the Lebesgue-Stieltjes integral, i.e.,

; ; Ny
) [ fe)dee) = Jim 3" feXat) - oti-a),
k=1

[0,t]

for any sequence of partitions 0 = t§ < tf < ... <t} = t of [0,¢]
where s} € [tR_,,tk] and maxp® |ty — tk—1| = 0 asn — oo If g
is continuous, then fot f(s)dg(s) is also given by (1.1) when f is right
continuous on. [0, t) with finite left limits on (0, ¢], or left continuous on
(0, ] with finite right limits on [0,). :

1.4 Probability Space, Random Variables, Filtration

Throughout this book, (2, 7, P) denotes a given complete probabil-
ity space. This means that (2, ¥) is a measurable space and P is a
probability measure on (£2, ¥) such that each subset of a P-null set. in
7 is in 7. The abbreviation “a.s.” for “almost surely” means “P-a.e.”.
The symbol w denotes a generic element of (1. For a function Y : Q —
"R (or IR) and a set A in R? (or R), Y~}(A) = {w: Y(w) € A} is
also written as {Y € A}. The symbol w.is also suppressed in similar
expressions.

We write L? for LP(Q); 7, P). For X € L', E(X) = [, X dP denotes

‘the expectation of X . As an extension of notation, for A € F, E(X5A)

‘denotes [, X dP, and when A is of the form {Y € A} this is written as
E(X;Y € A).



