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FIELDS OF GEODESICS ISSUING FROM A POINT

By MARsTON MORSE
THE INSTITUTE FOR ADVANCED STUDY

Communicated November 6, 1959

§1. Introduction.—We shall be concerned with a l-parameter family of open
Riemannian u-manifolds H, of class C”, where the parameter « varies on an open
interval I. The properties of fields of geodesics issuing from points p, of the respec-
tive manifolds H, are not fully stated or derived in mathematical literature known
to us, at least for the ends we have in mind. This note is designed to fill these
needs and will find an application in reference 1.

To simplify the exposition we begin with the more familiar case of a single
Riemannian p-manifold H, u > 1, leaving to §4 the main theorem of the paper.
Let p be an arbitrary fixed point in H. Let (z, . . ., ") be rectangular coordinates
in a BEuclidean u-space E,. Set
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@, ..., =x [ = @29 G=1...,4
employing the summation convention of tensor algebra. We introduce the u-disk
a5 = {xlll < o} 10

where p is any positive constant.
Let W be an open coordinate domain on H which contains p. We suppose that
there exists a diffeomorphism

oA > W:x — o(x) (1.1)

of A7 onto W by virtue of which Aj becomes (ref. 2, §0) the range of the local coordi-
nates (z). The term ‘‘diffeomorphism’ in this paper will always mean a diffeo-
morphism of class C”. Since H is supposed to be a Riemannian manifold we in-
clude the condition that at the point on W with local coordinates (x)

ds? = gy(x)dr'ds? Zg=1,...,u), (1.2)

where the coefficients g;; are functions of class C* for x ¢ A}, and the invariant
quadratic form is positive definite. As far as this paper is concerned H may be
supposed identified with W. The compatibility of the above representation ¢ of
W with other representations of open subdomains of W is presupposed in the sense
usual for Riemannian manifolds of class C*.

We suppose that under the diffeomorphism ¢, the point p is represented by the
origin in E,. We shall also suppose that ¢,,(0) = 8, If this condition were not
satisfied, it would be satisfied for a new set of local coordinates on a neighborhood
of p in H, on making a suitable non-singular linear transformation of the initial
coordinates (z).

Understanding that (r%, . . . , 7*) = r is a contravariant vector associated with
the point (x), set

fx, 1) = [gy®)rr?]". (1.3)
A geodesic g on W is represented on A by a regular curve
t—x(t) = (z'(®), ..., z"®) (ted) (1.4)

of class C? (at least), satisfying the Euler equations associated with the integral,
S f(x, %) dt.

These Euler equations do not uniquely determine the parameterization of g.
We shall admit only those representations of geodesics in which the parameter
t = cs, where s is the arc length measured along the geodesic in the sense of in-
creasing ¢, and ¢ is a positive constant. We shall limit our study to geodesics
issuing from p e H and shall measure s from p. It is easy to verify the fact that a
regular curve, of class C? of the form (1.4), represents a geodesic and is of class C°,
with ¢ = cs, if and only if it is a non-null solution of the system of pn differential
equations,

094

22 ) = W @i hii=1,...,m. (L.5)
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On any solution of (1.5)

d
L= fx D = (1.6)
where ¢ is a constant. Moreover ¢ > 0 if the solution represents a geodesic, and
¢ = 0if the solution reduces to a point.

§2. Solutions of (1.6) Vanishing at the Origin.—Let S be the class of solutions
t — x(t) of (1.5) such that x(¢) is in Ap and reduces to the null vectorat ¢t = 0. In

S we include the trivial solution such that |[x(¢)|| = O for all ¢. Since the deter-
minant ]g;., (x) ' # 0 for x ¢ Ap the following is true. Corresponding to an arbi-
trary point (2, ..., 2¥) = z in a p-plane §, there exists a maximum positive con-

stant b(z), possibly infinite, such that there is a solution of (1.5) in the class S of the
form, for fixed (2),

t— A(t, z) 0 Lt <b(z) 2.1)
with initial derived vector,
A0, z) = z. (2.2)

If |z| # 0 the solution (2.1) of (1.5) represents a geodesic g on H issuing from p
with a tangent vector at p given by (2). In this context we regard (2) as a contra-
variant vector associated with the origin in the coordinate system (z), or equiva-
lently with the point p in H represented by the origin.

The limits b(z) and domain Q. The limits b(z) are positive, and the function
z — b(z), defined for every z ¢ §,, is lower semicontinuous. This is readily verified.
Let @ be the union of the pairs (¢, z) such that

0<1t<b(2). (2.3)

The set @ is an open subset of the product of &, and the positive t-axis. Classical
existence theorems on differential equations applied to (1.5) yield the following:

(i) The function A is of class C* over Q.

For (¢, z) € @ and z fixed, set x(t) = A(t, z). With &k > 0 set x(kt) = y(?).
Then ¢t — y(¢) is a solution of (1.5) for ¢ in an appropriate maximal open
subinterval J of the positive t-axis. The initial derived vector on this solution is
kz. Such a solution of (1.5) is given by the function ¢ — A(¢, kz) for the given
fixed k and z, and for ¢t ¢ /. Hence we have the fundamental relation

A(t, kz) = A(kt,z)  (t, kz) e Q. (2.4)

This relation leads to the following:

(i) For k > 0, the patr (i, kz) is in Q if and only if (kt, z) isin Q. If (¢, z) s in
Q then for (0 < k < 1), (kt, z) and (¢, kz) are in Q.

Let “zl l be the Euclidean length of the vector z in the u-plane §,. Since g;;(0) =
311 it follows that f(O, z) = ||z|| when |z|| = 0. When ||z|| = 0, f(O, 2) is not de-

fined. The set of points z € &, such that ||z|] = 1, is compact. Since the function
z — b(z) is lower-semicotninuous one can affirm the existence of the
min (b(z) ’ “z” =1) =1, (introdueing ) (2.6)

The minimum 9 is positive. We shall prove (iii).
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(iii) The pairs (t, z) of the form (1, z) for which Hz” < narein Q.
Pairs (1, z) for which |jz|| = 0 are clearly in @. Suppose then that 0 < |lz]| < .

Note that
1,2 = (H H ) (2.7)

By (#7) the right-hand pair in (2.7) is in @ if the pair

(HZII, ﬁ) 2.8)

isin ©. But the norm of the vector in this pair is 1, and the numerical value of the
first element is less than . By definition of » the pair (2.8) is in @, and (iii) follows.

We shall presently use the following fact. If [laj| 1 O and if one sets x(f) =
A(t,a), thenfor 0 < fi< b(a),

L = Jx, 0) = f&(0), X(0) = 70, 8) = [a]} (2.9)

§3. A Geodesic Isometry.—Let a be a positive constant and let A% be the subset
of points z in &, such that |[z|| < a. With 5 defined as in (2.6) we shall map A into
the p-plane E, of coordinates x by setting

A(l,z) = x (z € AY) 3.1)
or, in terms of the components A* of A, by setting
A1, z) = ot ft=1,...,n 3.2)
The mapping (3.2) is well-defined for z ¢ A in accord with (iii) of §2. We shall
show that
%‘g; L)zl =0 =& Gi=1,...,n (3.3)
Proof of (3.3): If 0 <t < 1 and ”z” < 7 the pair (1, {z) is in @ according to
(ii) and (iii), and
A1, tz) = AY(¢, 2) GE=1,...,mn. (3.4)
by virtue of (2.4). Differentiating the members of (3.4) with respect to 2/ gives

04! 0A! ..
—a? (17 tZ) = 5‘;{ (t) Z) (1’;.7 =1,..., ). (35)

Differentiating the members of (3.5) with respect to ¢ and setting ¢ = 0 gives

LY K
Wl =0 = 22 69 l6=0)
(by |(2.2)). 2‘4 5 &2 ¢t =0 = —{ = &l (3.6)

This establishes (3.3).
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Let X denote the coordinate range A} in E,. To simplify statement () which
follows we regard X as a Riemannian manifold X* with a differential form given by
(1.2).

(1) If e1s a sufficiently small positive constant the mapping

z— A(l, z) (z € A 3.7

1s a diffeomorphism of Al into X* in which a ray \ issuing from the origin in Af is
mapped tsometrically onto a geodesic arc in X* issuing from the origin.

Let ¢ < 5 be chosen as a positive number so small that the mapping (3.7) is a
diffeomorphism. This is possible because of (3.3).

Let a now be a point in &, such that |ja]] = 1. The ray A may be given as a set
of points

{z|z = ta,0 < t < ¢.
The image of z = ta under the diffeomorphism (3.7) is the point
x = A(l,ta) = A(t, a) 0=t<e

This is a point on the geodesic arc v in X* with initial derived vector a, and dis-
tance s, measured along vy from the origin, such that s = t”a“ = Hz“ Cf. 2.9.
This establishes (i)
Since the diffeomorphism ¢ in (1.1) may be regarded as an isometry of X* onto
H, the preceding statement (¢) gives us the following. Cf. ref. 3, pp. 97-100.
Lemma 3.1.  Corresponding to the point p e H and a sufficiently small positive con-
stant e, there exists a diffeomorphism

YAl — H; z— Y(z)

such that each ray \ in A% issuing from the origin with 0 = |[z|| < ¢ on X is mapped
isometrically onto a geodesic arc issuing from p ¢ H.

This lemma is preliminary to the principal theorem of §4. We lerm the mapping
¥ in the lemma a radial-geodesic isometry of AZ onto a geodesic p-disk in H with pole p.

§4. A 1-Parameter Family of u-Manifolds H,.—We shall consider a 1-parameter
family of u-manifolds regularly embedded in a Riemannian n-manifold M of class
C®” withn = u + 1. We suppose that the parameter « varies on an open interval
I which includes @« = 0. Our family of p-manifolds H, is defined by a diffeo-
morphism

A X T —>M;x X a—> px, ), (4.0)

where p(x, a) is a point in M, and where, for fixed a ¢ I, ® reduces to a diffeo-
morphism,

b,:A7 > M, x—> px, ) (4.1)

which serves to define H, as the image of A; under ®,. Since our principal lemma
is local in character we can suppose without loss of generality that ® is a map onto
M. Thus M is given as a single coordinate domain. The sets (z!, . . . , 2% «)
in A7 X I are thus local coordinates on M.

Let a Riemannian metric be assigned the manifolds H, by restriction of the first
fundamental form on M. Thus at the point p(x, a) ¢ H,
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ds? = gy(x, a)dx'dz’ (G,g=1,...,un). 4.2)

where the coefficients g;; are functions of class C” on A; X I, and for each « € I the
form (4.2) is positive definite.

A curve k traversing the family {H " |¢_x el } = A. Let « be a simple, regular arc of
class C” on M, meeting each manifold H, in a single point p, and not tangent to
H, at p,. With « so defined the principal theorem of this paper follows.

TeHEOREM 4.1. Let k be a regular curve of class C® traversing A. Corresponding to
a suffictently small positive constant € and a sufficiently small subinterval J of I con-
taining o = 0, there exists a diffeomorphism ¥ of AZ X J into M which for fixed
a € J reduces to a radial-geodesic isometry ¥, of AZ onto a geodesic u-disk in H, with
pole H, n «.

Since the sets (2}, . . . , ¥, @) in A X I are admissible coordinates on M and the
arc « is not tangent to any of the manifolds H,, on which « is constant, x has a
representation z* = ¢ (a):z = 1, ..., u, of class C” for a ¢ I. Without loss of
generality we can suppose that each of the functions ¢* vanishes. Were that not
the case a change of local coordinates of the form

y=a'—¢a) (G=1...,p

would bring it about. Such a change would call for a proper new choice of AY and
interval I. We shall suppose however that « is represented by the interval I of the
a-axis in the space E, X I.

The proof of the theorem is similar to the proof of Lemma 3.1. It requires
supplementary consideration of how the mappings introduced in §§1-3 depend
upon a.

Without loss of generality in the proof of the theorem we can suppose that

950, a) =8  (@j=1,...,n) (4.3)
provided «a is restricted to some sufficiently small neighborhood of « = 0. In fact
if (4.3) did not hold for some such neighborhood of @ = 0, then for some sufficiently
small constant § > 0 it would be possible, for each « ¢ (—8, §), to make a non-
singular, linear transformation of coordinates

L,:y* = by(a)’ (4.4)
such that the coefficients b, are functions of class C* for a ¢ (—4, 6) and the condi-
tion (4.3) holds for the transformed coefficients. The transformations (4.4) are
readily defined, making use of a modified Lagrangian method of reduction of a
quadratic form. The reader is referred to a proof of Lemma 10.1 in Ref. 4 for an
application of such a method.

We assume then that (4.3) holds for a e 1.

The differential equations which here replace (1.5), have the same form, except
that g,(x, a) replaces g4(x). Limits b(z, «) are here defined for each « ¢ I and
Z € §,, as was b(z) in §2. The resulting function (z, «) = b(z, «) is lower semi-
continuous on the product &, X I.

Let Q* be the union of the triples (¢, z, a) for 0 < ¢t < b(z, @) and « ¢ I. The
function A with values A(¢, z, o) and domain of definition Q*, is defined for fixed
a eI, as was the function A in §2. The new function is of class C® over Q*, and the
identity
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