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PREFACE

The computer-based finite element method has now emerged as
a unified procedure for numerical solution of physical problems in high technology
engineering. It has gained acceptance as a powerful analysis and design aid
in diverse areas due to its versatility and adaptability. I[n order to consolidate
the recent advances in this area of activity and to provide an international
forum for interaction between the active researchers of east and west, the
idea of FEICOM-85 was born sometime in the beginning of 1983.

This book contains the texts of contributed papers and most of the
invited lectures.. All the authors prepared their manuscripts in camera-ready
form. However, in some cases a good amount ‘of editing and retyping had to
be undertaken for clarity sake. The editor however does not accept responsibility
for comments and opinions expressed in these papers.

Tarun Kant
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ADAPTIVE FINITE ELEMENT
METHODS FOR COMPLEX
PROBLEMS IN SOLID AND FLUID
MECHANICS

J.- T. Oden and L. Demkowicz

Texas Institute for Computational Mechanics, The University of Texas
at Austin, USA

ABSTRACT
This paper addresses the general topic of adaptive methods for automatically
enhancing the quality of numerical solutions to linear and nonlinear boundary-
value problems in solid and fluid mechanics, and reviews some of the recent
work of the author and his collaborators on this subject.

.
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INTRODUCTION

The basic objective of an adaptive finite element method is to improve the
quality of an initial finite element approximation by automatically changing
the model: refining the mesh, moving mesh nodal points, enriching the local
order of approximation, etc. Thus, all adaptive methods must attempt to re-
solve two basic issues: 1) how is the quality of the approximate solution to
be measured? . and 2) how does one adapt the model to improve the quality of
the approximation?

The first question is generally resolved by attempting to measure the local
approximation error in some appropriate norm. The error, of course, is the
difference between the exact solution u and a finite element approximation

u of u on a given mesh, Since u is not known, the problem of assessing
tRe quality of an approximation reduces to one of a-posteriori error estima-
tion: the determination of estimates of the error using computed finite
element solutions. A number of important papers on various schemes for a-
posteriori error estimation has been contributed by Babuska and his collabora-
tors (1978a, 1978b, 1824,

Once an estimate of the distribution of the error is available, the difficult
question of how to best modify the model to improve accuracy arises. There
are three general approaches:



h-Methods. Here the mesh is refined; the mesh size h 1s reduced and
the number of elements in the mesh is increased in regions of large error.

p-Methods. Here the mesh is fixed but the degree p of the polynomial
shape functions is increased over elements-in which a high error is indicated.

Moving Mesh Methods. In these methods, the number of nodes and the type
of finite element remains constant during the adaptive process and the nodal
points are moved to regions of high error.

0Of course, one can also employ combinations of these strategles. But the
_correct strategy for use of combined methods is apparently a delicate issue
and one in which much additional study needs to be done.

We shall describe here two methods for error estimation and show how these
can be implemented in each of the three adaptive schemes listed above.

A~POSTERIORI ERROR ESTIMATES . o

We describe two classes of a-posteriori error estimation, one based on the
computation of elemént residuals and the other based on interpolation error
estimates. The former class of methods was introduced by Demkowicz, Oden,
and Strouboulis (1984) and includes several of the results of Babuska and
colleagues (1978a, 1978b, 1983), and the latter was first advocated by Diaz,
Kikuchi, and Taylor (1983) and investigated by Demkowicz and Oden (19853a,
1985b, 1985¢).

Residual Methods

Consider the abstract boundary-value problem, Find u in V such that

<Au, v> = <f,v> for all v in V . (1)
where
A = a (possibly nonlinear) operator from a reflexive Banach space
of admissible functions V dipto its dual V*
v = an arbitrary tes% function in V
f = given data in V
<e,*> = duality pairing on V x V

*
This problem is equivalent to the abstract problem: Au = f in V

A Calerkin approximation of (1) consists of seeking a function Uy in a
finite dimensional subspace Vh of V such that

<Auh, vh> = <f,vh> for all vy in Vh (2)
The residual r is the degree with which the approximation uy fails to
satisfy the original conditions on the solution:
*
= - 3
Ty Auh f 4 0, rh eV (3)
*
Since the residual belongs to the dual space V and not necessa;ily v, its

magnitude must be measured with respect to the norm |l‘l[* on V ¢



<r ,v>
e, = suP v
B v
(%)
= sup <r,,v>
vl
where H °H is the norm in V

In some of the error estimators that we have developed, we use the following
procedure to approximate the supremum in (4):

= * The grigimal finite element approximation wu is computed in a space
v, = V% of spanned by low-order (say, linear) piecewise polynomial-
sgape functions, resulting in the residual r%.

*+ The full épace vV is approximatéd by a higher-order finite element
space Vg, p > 1, spanned by piecewise polynomials of degree p .

An approximation of the residual r; is constructed according to

el s el =il > PR B

where C 1is a constant, Vv is an element of V realizing the sup in (4)
and v’ is an arbitrary elément of vP . If h is the mesh size (i.e.

for a partition Th of elements K , h
h = max hK , hK = diameter (K)
K 6 Th
we generally have
_ P - P
l\vp vhl] 0(h")
so that it makes sense asymptotically (as h = 0) to approximate sup<r;,v>
by sup<rh,v§> .

As an example of how this procedure can be implemented, consider the model
problem,

Find u in V = {v & Hl(Q) ;i v=20 on Fl} such that

j Vu ¢« Vvdx = J fv dx + j gv ds for all v in V (6)
Q Q T

This is the variationmal form of the model Poisson problem,

f in Q CZ'RZ

1
o
=

[}

(=]
"

0 on I‘1C LIS €D

™ - 8om I‘2C N



with A = A2, HT(Q) the usual Sobolev space of functions with derivatives in

2 = -
L@ , and 30 =T UT, .

We define )
v, = {vh €V : vh{K 6 Q(x) , 2 = UK}

VR = (v 6 P (K)) ‘ (8)

1
VﬁO(K) = {Vg 6 VE(K) iy p>1, vy interpolant vﬁ = 0}

where Q,(K) 1is the usual set of bilinear functions defined on a quadri-

lateril élement K and P (K) is the space of polynomials of degree p
defined on K .

Thg regidual rl satisfies

h
1 p, _ o )
<rh, vh> = i {{K ( Auh f)vh dx
1 1
Buh *h
+J !i('a—n 8 )V ds
K\ 00
1
du )
J (—53 - g) vﬁ ds} = L < Rih, v§> (9)
3K(\F2 K

1 ‘
where u, 1is the (coarse—grid—initiall finite element approximation of u
determined using the space V. and Rli is the functional on VP defined

as indicated, with 9u h/dn an approximation of du/ & Jotalnndhfrom an
adjacent element to XK.

It is not enough to simply calculate ih as an indicator of the error in
element K . In general, we wish to have an indicator of the error
which will bound the local error above and below and whicﬁ will converge to
zero at the same rate as the actual error; e.g.

cll ol s Merrorll < 18l

2
IMQHJjJKwK.%Km L ao
such an error indicator is obtained as a solution of the auxiliary problem, -

JK Ty - dx = <RK p> for all vg in vp (K) an

We generally compute the solution of (11) using the concept of hierarchic
elements in which the stiffness matrices are only modified by the addition
of a row and column with the addition of each degree of freedom (see, e.g.,
Carey and Oden, 1981 for details). Using (11), (9), and (5), we have (to
within terms of O(WP)) -



X
el < e 2 ] dve 17 a0 a»

where C 1is a (hopefully) known constant. Though this estimate is global,
we use ‘|¢K“1,K as an estimate of the local error over each element K .
In general, reducing [[¢K|!1 g implies a reduction in [[rl‘! which (parti-
cularly for linear self-adjoint problems on Hilbert spaces) implies a reduc-

tion in llu-uhl].

Interpolation Errer Estimates

It 1s well known (see, e.g. Oden and Carey, 19831 that for linear elliptic
problems the approximation error H e l]v can be bounded above

by the so-called interpolation error, V
1 1 1
il eh”V < cll u.-vhHV for all i in \l’h (13)
For the model problem (6), for example,
ki
J V(umul) * V(u-ul) dx
Q h h
1 1
‘u—uhll, < € inf lu"vh’l,Q 14y
Yh 6 Vh

If u 1is smooth enough, a local interpolation error estimate can be derived
of the type (for Ql—elements)

l .
l“"’hll,x = Cb‘x‘“‘z,x (13)
where
2
Jul = [ W dx
2,K X
32 Bzu
Wdx = <—~‘2‘ + =) dx dy (16)
331 sz

The basic problem we face when attempting to make use of any of these estimates
is that we must calculate the higher order derivatives of the unknown solution
using only available information, i.e., through use of the currently available
finite element solution u; . There are numerous a priori techniques for

estimating the second derivatives u__, u or u , but many are somewhat
xx Xy yy

intuitive and not a2ll are based on rigorous estimates. Exceptions are the
techniques based on so-called ''extraction formulas" introduced by Babuska

and Miller (1984a, 1984b). Following their idea one can prove that, if u
is regular enough, then the second derivatives at an arbitrary point (xo,



yo)" satisfy

EEE (x o) - 232'(x y.) = { A% u dxdy
ax2 0 0 ayZ 0 0 JQ

J' (¢)+$)fdxdy-j u-,;- (¢+$)ds+J
Q ke

- du
(¢ + ¢) = ds (17).
30 dn

af

Here ¢ = % c%?2 where (r, 6) are the polar coordinates centered at the
r

point (xo, yo) under consideration and ¢ is an arbitrary, regular func-

tion. By the proper choice of ¢ , one can eliminate the boundary terms in
(17). Of course, u on the right-hand side of (17) remains still unknown,

but when replaced by its element approximations u% results in a formula

for approximation of second-derivatives at (xo, yO) of the same order of
: 2
accuracy as the L7 -error in the approximation of u by uﬁ . For example,

for the first order approximation we can "extract' the difference of second
order derivatives with 0(h“) order of convergence! Formula (17), when com-
bined with equation (7), allows us to calculate each of the derivatives

separately. Also, by choosing ¢ = % 51226
.8_2._u_(xry).

axdy 0’ °0

One method we have used successfully in applying the estimate (15) is to

construct the functiqn ¢ wusing a bivariate blending function of Gordon
and Hall (1971, 1973) type.

in the same formula, we can

Y"extract" the mixed derivative

Note that we still have 2 global estimate although we "apply it" to K

12 2 (2 _
Jlu - uhll,Q <c i hy ‘ulzIK . (18)

MESH REFINEMENT STRATEGIES BASED ON THE A POSTERIQORI ERRQR ESTIMATES

While many issues remain open in the area of reliable a-posteriori error
estimation, still further complications exist in designing efficient adap-
tive algorithms based on these estimates. The basic problem can assume the
form of an .optimal control problem in which one has to attain a discrete
approximation which 1is optimal in some sense determined by the error measures
and the strategy used to reduce error. The entire problem is further compli~-
cated by the fact that our a-posteriori estimates are global in nature (par-
ticularly the residual-type estimates discussed earlier) even though they
are used locally as a basls for local enrichments of the solution.

In this section we describe three methods developed by Oden and colleagues,
(1985), Demkowicz and Oden (1985), Demkowicz, Oden, and Strouboulis (1984),
and Demkowicz, Oden, and Devloo (1985).

o

An h-Method

Consider a quadratic mesh and the associated error estimate (18). If we



