HANDS-UN ALWITH Jauk

At Gammg Hootics an Mme

Build programs that
work intelligently
with humans

Add smarts to
computer games

Program optimal
path-finding for
machining and robotics




Hands-On
Al with Java

Smart Gaming,
Robotics, and More

Edwin Wise

McGraw-Hill
New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan New Delhi
San Juan Seoul Singapore Sydney Toronto




The McGraw-Hill companies

Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in the data base or retrieval
system, without the prior written permission of the publisher.

234567890 DOC/DOC 01987654
ISBN 0-07-142496-2

The sponsoring editor for this book was Judy Bass and the production supervisor
was Pamela A. Pelton. It was set in Century Schoolbook by the Alden Group,
Oxford. The art director for the cover was Anthony Landi.

Printed and bound by RR Donnelley.

This book is printed on recycled, acid-free paper containing a minimum of
@ 50% recycled, de-inked fiber.

McGraw-Hill books are available at special quantity discounts to use as premiums
and sales promotions, or for use in corporate training programs. For more informa-
tion, please write to the Director of Special Sales, McGraw-Hill Professional,
Two Penn Plaza, New York, NY 10121-2998. Or contact your local bookstore.

Information contained in this work has been obtained by The McGraw-Hill
Companies, Inc. (“McGraw-Hill”) from sources believed to be reliable.
However, neither McGraw-Hill nor its authors guarantee the accuracy or
completeness of any information published herein and neither McGraw-Hill
nor its authors shall be responsible for any errors, omissions, or damages
arising out of use of this information. This work is published with the
understanding that McGraw-Hill and its authors are supplying information
but are not attempting to render engineering or other professional services.
If such services are required, the assistance of an appropriate professional
should be sought.




ABOUT THE AUTHOR

Edwin Wise is Vice President of Development and partner at Wittlock
Engineering, LLC, Austin, Texas. A software engineer with over 20 years
of experience, his expertise and interests range from basic electronics and
software development to microcontrollers, Al, and robots. He is the
author of Applied Robotics; Applied Robotics 1I; and Animatronics:
A Guide to Animated Holiday Displays, all published by Delmar Learning.
He lives in Austin.



ACKNOWLEDGMENTS

This book could not have been written without the support of my wife,
Marla. And, of course, McGraw-Hill would not have asked me to write
it if I didn't have the support of you, my readers.



CONTENTS

Acknowiedgments

Chapter 1

Chapter 2

Chapter 3

Artificial Inteiligence

Introduction
Audience
Purpose
Examples
Categories of Al
Validation
Statistics
Validating Filtering and Predictive Systems
Code: Strip Chart Display
Validating Optimizations
Validating Classification
Code: Hinton Diagram Display
And Beyond

Computing Framework

Architecture Overview
Software Agents
Distributed Computing
Networking
Code: Threads
Code: Pipes
Code: Sockets
Code: Class Loader
Remote Method Invocation
Communication Language

Control Systems

Introduction: Reflexes
Fiitering
Electronic RC Filters
Convolution Filters
Code: Convolution Filter
Proportional-integral-Derivative Control
Code: Simplified Heater Process

33

34
40
44
44
48
5]
53
56
59
60

63

64
65
65
66
68
70
72



Chapter 4

Chapter 5

Fuzzy-Logic
Crisp Boolean Logic
Basic Fuzzy
Code: Singleton Fuzzy Logic
Code: Fuzzy Heater Controller
Code: Fuzzy Logic

Neural Reflexes

Scripted Behavior

Data-Oriven Intelligence
Finite State Machines
Designing an FSM
Table Driven FSM
Code: Table-Oriven FSM
Code: FSM Library
Code: Coin Box Revisited
Markov Models
Code: Markov Sentence Generation
Frame-Based Inteliigence and Chatbots
Pattern Matching
Scripts
Frames and Agendas

Discrete Searching

Introduction

Brute-Force Searching
Depth-First
Breadth-First
Cheapest-First
Bi-directional

A* Search
Code: A* Engine
Code: A* Path Finding
Code: A* Panel Nesting

Two-Player Games
Min-Max Search
Alpha-Beta Pruning
Code: Alpha-Beta Engine
Code: Amoeba Game

Contents

75
75
78
81
89
94
101

103

104
105
106
108
110
13
124
131
136
140
141
143
143

145

146
148
148
149
150
151
151
153
156
159
162
163
166
169
171



Contents

Chapter 6

Chapter 7

Chapter 8

Searching State Space

What is State Space?
Reinforcement Learning

Core Concepts: Temporal Difference Learning

SARSA

Off-Policy O-Learning

Eligibility Traces

Code: Continuous Control
Representing State Space

Map Decompaositions

Partioning Continuous Space
Genetic Algorithms

Encoding the Problem

Breeding

Mutation

Evalutating Fitness

Selection

Thinking Logically
Logic
Zero Order
First Order
Second QOrder
Using Logic
Inference
Proofs
Unification
Resolution
Normalizing Sentences
Proof by Resolution
Code: Unifier
Code: Backward Chaining
Code: Forward Chaining
Knowledge Representation

Supervised Neural Networks
Stmulated Intelligence
Neural Models

Biological Neurons

175

176
176
177
180
182
182
184
188
188
189
192
193
200
203
205
207

209

210
210
214
217
218
218
219
222
223
226
229
230
237
242
245

249
250
251
251



Contents

viii

Code: Hodgkin-Huxley Neural Model 253
Pulsed Neuron Computing 256
Computational Neurons 258
Perceptron 261
Code: Perceptron 262
Multiple Categories 264
Multi-Layer Perceptron 264
State Space 266
Delta Rule 266
Backpropagation 267
Code: Backpropagation Character Recognition 271
Momentum 279
Normalization 281
Filtering 282
Scaling 282
Z-Axis Normalization 283
Binary Representations 284
Softmax 285
Associative Memory 286
Bidirectional Associative Memory 286
Code: Hopfield Network 287
Advanced Concepts 289
Time-Series 289
Fuzzy-Neural 290
Growing Networks 291
Chapter 9 Unsupervised Neural Networks 293
Neurons Revisited 294
Hebb 294
Pattern Matching 296
Self-Organizing Maps 298
Basic Operation 299
Code: RGB Map 303
Network Variations 308
Supervised 308
Biologically Plausibility 309
Growing Netwaorks 310

Elastic Networks for the Traveling Salesman Problem 313



Contents

Code: Fast Elastic Net
Document Processing

Words

Documents
Hierarchy and Time

Multi-Modal SOM

Hierarchical SOM

Time-Series

References

Index

317
321
321
321
322
323
324
326

329
333



Artificia

Intelligen




Chapter 1

This chapter introduces the form and format of this book and the topic
of Artificial Intelligence. The bulk of this chapter sets some groundwork
in the form of the display classes JGraphPanel, JLineChart, and
JHintonGraph, and introduces the complex topic of validating the results
of your Al projects.

Introduction

What is artificial intelligence (AI)? Even limiting our scope to the world
of computer science, this is a question that has different answers to dif-
ferent people.

You can pick up one book on Al techniques and it will contain a hun-
dred and one ways to perform supervised learning in backpropagation
networks. A different book might list the tasks and technologies required
to build expert systems using predicate logic. Other books will focus on
categorization of input data using self-organizing networks. Yet another
programmer may eschew all of these and use state machines to manage
their problem,

On a higher level, Al topics include vision processing, speech recogni-
tion, path planning, expert problem solving systems, robot guidance sys-
tems, etc. There are few areas of computer science that are untouched by
Al if you paint with a broad enough brush.

In general, Al techniques are used when a direct numerical solution is
not available or feasible. Al gets to attack the “hard” problems.

The philosophical landscape of Al is littered with people debating
whether machines can ever be truly intelligent. That is an interesting
question, and the cognitive scientists and computer science researchers
who are trying to simulate or emulate actual brains have their work cut
out for them. However, if you approach Al from a practical level things
become much simpler. We do not care if it is truly intelligent, only that it
solves our problem. Most application developers simply want an algo-
rithm that will solve the problem in hand, and Al techniques are good at
solving hard problems.

While most books will pick one or two types of Al, this book attempts
to look at most of the techniques within the AI umbrella. This means our
focus is broad rather than deep. This also means that we will only be able
to cover the essence of most techniques and not delve into all of the
details. On the other hand, once you have the basics in place it becomes



Artificial Intelligence 3

much easier to read and apply the dizzying variety of details available in
the research papers and in other books.

The content of this book embodies my philosophy of books, the
three book theory (TBT). The TBT states that, for any given technology
or problem, you should have three books that address it. One book can be
mistaken, confusing, or leave out important details. Three books, how-
ever, can give you a clear picture. So this book is not designed to be the
one true book, but simply one of the three books on Al you need to get
the job done. This is the overview and introduction to the building blocks
of AL

The first two chapters of this book lay some groundwork.

Chapter 3 begins exploring the outer edges of AI with we investigate
reflexive control systems such as PID controls and fuzzy logic.

State-based systems provide scripted responses to stimulus. These
include finite-state machines and their variations, Markov chains, and
even Chatbots, explored in Chapter 4.

Many applications of Al do not look “intelligent” at all, but these
problems can still be guite difficult to solve. A common problem, for
example, is searching for something in a large data structure, decision
tree, or problem space. The obvious methods of searching, such as
visiting every possible answer to see if it is the best, can be too slow. A
classic example is searching for the best next move in a chess game; there
are simply too many possibilities to consider. Even though it would be
possible to visit every single one it would not be practical. These prob-
lems are where smart search algorithms come into play, as detailed in
Chapter 5.

Chapter 6 takes searching further, looking at search problems where it
is not even posstble to visit every possible solution. More intricate search
algorithms are developed here, such as reinforcement learning and
genetic algorithms.

In additional to searching techniques, “classical” Al is interested in the
logical approach to thinking and problem solving, and the clever manip-
ulation of symbols. We take a look at some of these logical techniques in
Chapter 7.

Sub-symbolic techniques, however, have been the darling of the Al
community for a while now. They provide an entirely different way of
solving difficult categorization and prediction problems. Chapter 8 looks
at neural networks and supervised neural network learning methods,
while Chapter 9 expands on this base with unsupervised learning meth-
ods, the self-organizing maps.



Chapter 1

Audience

This book is written primarily for the busy programmer though it can be
used by anyone with an interest in learning how different AI techniques
work.

It assumes the reader has a working knowledge of Java and is already
proficient at programming. The details in this book dwell on the Al
aspects of the problem and not on the way it was coded.

You should also be capable of working algebra problems, and not be
frightened of mathematical symbols, such as Y.

Purpose

This book is a field-guide to the world of artificial intelligence program-
ming. It describes a broad range of Al tools that can each be applied to a
wide array of problems.

These techniques range from those that can barely be considered intel-
ligent, such as efficient tree searching, to classical AI symbolic tech-
niques, to the bio-mimetic neural networks.

There are many ways to write about this kind of information, with
each approach fulfilling a different need. The form of this book reflects
my own deep-seated love of seeing how things work. It takes a practical
approach to the subject, answering the question “how does this work?”
rather than “why does this work?”

Examples

Most of this book describes the algorithms of Al, but there are also quite
a few words devoted to describing the code examples. When I was learn-
ing programming I found the best teacher was existing code, to see how
the principles are applied in practice. Working code can clarify a problem
in a way that prose cannot. At the same time, it is important to know the
theory behind the code for it to make sense. I hope I found the correct bal-
ance between theory and practice.

As the title of the book suggests, all of the code in this book is written in
Java. Java is used because it is clear, simple, and portable. The downside
that it is a moderately slow language is minor—once an algorithm is
understood it can be adapted to the language of your choice.



Artificial Intelligence 5

The Java style used in the examples does not match the Sun
Microsystems, Inc. coding conventions (as described at java.sun.com/
docs/codeconv). I write in a mix of styles that have accreted over many
years of programming.

Likewise, the documentation in the source is almost but not quite in
JavaDoc format. I have found that Doxygen (www.doxygen.org) uses a
more efficient commenting style and it provides marvelous documentation
results. Plus, it can be applied to almost any language. I can just hear the
comments now, however. “Why use a standard language like Java but then
ignore the standard JavaDoc?” An excellent question, I am glad you asked.
Java makes for great example code and can be run on any platform regard-
less of the documentation style. Doxygen is, I feel, a better format than
JavaDoe—it is more readable and it does more than JavaDoc does. I am
simply trying to use the best tools that I can.

All of the source and documentation can be found on the accompany-
ing CD, as well as the website www.Simreal.com. Relevant excerpts are
printed in the book, though to include all of the code in print would make
the text cumbersome—there are many details of a working program that
do not make for interesting reading.

Once you have the source code on your computer you can re-format it
to match your own tastes using one of the many Java formatting tools,
such as Jalopy (jalopy.sourceforge.net).

All of the code in this book was written for, and runs on, Java 1.4.1 using
the JCreator Pro IDE (www.jcreator.com) under Microsoft Windows.
Though it is not visible in the finished product, debugging support was
done through the ubiquitous System.out.printin() and, when the going got
tough, JSwat (www.bluemarsh.com/java/jswat/).

If you want to explore the shape of the different equations in this
text, I recommend the graphing tool Equation Grapher, found at
www.mfsoft .com/equationgrapher.

Categories of Al

There are many different ways to divide and categorize Al systems. Some
of these facets of Al are explored here.

You can separate the artificial intelligence field by application: com-
puter vision, speech recognition, theorem proving, text parsing, adaptive
controllers, and so forth. It may be more useful for a reference work to divide



Chapter 1

AT up by technique: filters, controllers, tree search, state space search, state
machines, pattern categorization, prediction in time-series data, etc.

Different Al techniques apply in different contexts. Some systems are
fine when they can work offline, spending significant amounts of CPU
time crunching on a problem. For real-time, online problems, different
techniques may need to be used.

When an Al module has to learn or adapt to its environment, is that
learning done offline, supervised by the programmer who feeds it inputs
and answers, or is it online, learning as it goes? Other methods are sta-
tic; they are programmed to behave in a particular manner and that is
what they do, every time, all the time.

In my manufacturing applications I like the results to be repeatable
and predictable, so I use deterministic methods whenever possible. When
the customer runs a job and gets a weird result, I can repeat that run
exactly and get the same result. But some Al techniques do not work that
way; randomness enters into their calculations and the end results, while
consistent across runs, may not be exactly the same. The benefit of these
random (stochastic) algorithms is that they can find good solutions for
very large or very difficult problems.

Whether you get exact results or not can alse depend on the state
space of the problem. Can each possible answer be listed and then
searched (in theory if not in practice), making the problem space dis-
crete? Or does the answer lie along a continuum, with an infinite possi-
ble number of answers, some more right than others? Sometimes you can
adapt your problem to be either discrete or continuous. Sometimes you
have to play the hand you are dealt.

Finally, the biggest rift in the Al system is the debate between sym-
bolic and sub-symbolic systems. Is the problem defined using logic and
inferences, symbols and manipulations of those symbols? Or is the prob-
lem solved using a network of interacting, low-level computational ele-
ments, with no explicit knowledge? The sub-symbolic (also known as
connectionist) solutions are typically based on biological systems.

As you read through the various algorithms in this book, notice which
categories they fit:

« Task: Filtering, control, searching, classification, prediction, or
optimization?

#+ Style: Symbolic, connectionist, or collaborative?

i Problem type: Discrete or continuous?

«» Solution type: Deterministic or stochastic?



Artificial Intelligence 7

s Learning: Static or adaptive? If adaptive, online or offline learning?

w Execution: Fast or slow? Offline or online?

This list is not comprehensive. For example, it is missing the architec-
ture dimension; is the solution a sense-plan—act cycle, or is it a set of
experts working in parallel, reacting to their environment in a behavioral
system? The list goes on.

Validation

For most deterministic problems, validating your solution is a simple
enough task. You present the program with a set of data and check the
results against known answers. For example, searching a data structure is
known to work when it finds an answer when an answer exists, and it does
not find an answer when one does not exist.

But even then, you may want to quantify the results of the search in
terms of how quickly the answer was found.

Once you move into the realms of stochastic solutions (those that
involve randomness), you will get degrees of “rightness” or some percent-
age of right answers. In these cases, you need to apply statistical tools to
get an idea of whether your solution is right enough for production work,
or if you need to develop it further.

Finally, when you are adjusting and improving your Al code, it helps
to know whether the change you just made has improved or degraded
your algorithm, or if the change was not significant either way.

While this is not a book on statistics, and cannot go into much depth
on that subject, we touch on some statistical techniques you can use as
you explore different Al solutions.

In the process of exploring various validation techniques, we lay down
some basic Java code for displaying information. Visual feedback is an
excellent way to get a gut feeling for how something is behaving, and
these classes come in handy later as we actually do work.

Statistics

There are two kinds of statistical techniques, descriptive and inferential.
Descriptive statistics provide numbers that can be used to charac-
terize a set of data. In this case, we have all of the information in hand



