LNCS 3771

Judi Romijn
Graeme Smith
Jaco van de Pol (Eds.)

Integrated
Formal Methods

5th International Conference, IFM 2005
Eindhoven, The Netherlands, November/December 2005
Proceedings

@ Springer

Judi Romijn Graeme Smith
Jaco van de Pol (Eds.)

Integrated
Formal Methods

5th International Conference, IFM 2005
Eindhoven, The Netherlands

November 29 — December 2, 2005
Proceedings

A0

E200600967

@ Springer

Volume Editors

J.M.T. Romijn

Eindhoven University of Technology, Computing Science Department
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail: jromijn @win.tue.nl

G.P. Smith

The University of Queensland

School of Information Technology and Electrical Engineering
4072 Australia

E-mail: smith@itee.uq.edu.au

J.C. van de Pol

Centre for Mathematics and Computer Science (CWI)
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: Jaco.van.de.Pol@cwi.nl

Library of Congress Control Number: 2005935883

CR Subject Classification (1998): E.3,D.3,D.2, D.1

ISSN 0302-9743
ISBN-10 3-540-30492-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30492-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11589976 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor)

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi -

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3771

Preface

This is the 5th edition of the International Conference on Integrated Formal
Methods (IFM). Previous IFM conferences were held in York (June 1999), Dag-
stuhl (November 2000), Turku (May 2002) and Canterbury (April 2004). This
year’s IFM was held in December 2005 on the campus of the Technische Univer-
siteit Eindhoven in The Netherlands.

This year IFM received 40 submissions, from which 19 high-quality papers
were selected by the Program Committee. Besides these, the proceedings contain
invited contributions by Patrice Godefroid, David Parnas and Doron Peled.

It was 10 years ago that Jonathan P. Bowen and Michael G. Hinchey pub-
lished their famous Ten Commandments of Formal Methods in IEEE Computer
28(4). Their very first commandment — Thou shalt choose an appropriate no-
tation — touches the heart of the IFM theme: Complex systems have different
aspects, and each aspect requires its own appropriate notation.

Classical examples of models for various aspects are: state based notations
and algebraic data types for data, process algebras and temporal logics for behav-
ior, duration calculus and timed automata for timing aspects, etc. The central
question is how the models of different notations relate. Recently, Bowen and
Hinchey presented their Ten Commandments Revisited (in: ACM proceedings of
the 10th International Workshop on Formal Methods for Industrial Critical Sys-
tems). They distinghuish variations in combining notations, ranging from loosely
coupled viewpoints to integrated methods.

The loosely coupled viewpoints are quite popular (cf. the success of UML) and
are easy to adopt in a leightweight process. They could be useful for specifying
and analyzing isolated system aspects. However, the main advantage of formal
methods — being able to specify and verify the correctness of complete systems
— is lost.

In order to specify and verify complete systems, an integrated approach is
inescapable. Integrated methods provide an underlying concept, a semantic in-
tegration of models, an integrated methodology and integrated verification al-
gorithms. The added value is that questions regarding inter-model consistency,
completeness and correctness of implementations become meaningful and can be
answered effectively. Bowen and Hinchey acknowledge this as the central theme
of the series of IFM conferences.

These proceedings contain new insights in the field of integrated formal meth-
ods. The various papers contribute to integration at notational, semantic and
tool level. We hope that the reader will find inspiring material and useful knowl-
edge. Ultimately, we hope that the field contributes to more reliable software
and hardware systems, constructed with less effort.

We would like to thank all PC members and all anonymous referees for their
excellent and timely job in assessing the quality of the submitted papers. We

VI Preface

also thank the invited speakers for their contributions. We are grateful to Hol-
ger Hermanns for his invited tutorial on QoS modelling and analysis for em-
bedded systems. Finally, we thank our home institutes Technische Universiteit

Eindhoven, University of Queensland and CWI for their support.

September 2005

Program Committee

Didier Bert (France)

Eerke Boiten (UK)

Jonathan Bowen (UK)
Michael Butler (UK)

Paul Curzon (UK)

Jim Davies (UK)

John Derrick (UK)

Steve Dunne (UK)

Jin Song Dong (Singapore)
Andy Galloway (UK)

Chris George (Macau, SAR China)
Wolfgang Grieskamp (USA)
Henri Habrias (France)
Maritta Heisel (Germany)
Soon-Kyeong Kim (Australia)
Michel Lemoine (France)
Shaoying Liu (Japan)
Dominique Mery (France)
Stephan Merz (France)

Sponsors

Judi Romijn, Graeme Smith, Jaco van de Pol

Richard Paige (UK)
Luigia Petre (Finland)
Jaco van de Pol

(Co-chair, The Netherlands)
Judi Romijn

(Co-chair, The Netherlands)
Thomas Santen (Germany)
Steve Schneider (UK)
Wolfram Schulte (USA)
Kaisa Sere (Finland)
Jane Sinclair (UK)
Graeme Smith

(Co-chair, Australia)
Bill Stoddart (UK)
Kenji Taguchi (Japan)
Helen Treharne (UK)
Heike Wehrheim (Germany)
Kirsten Winter (Australia)
Jim Woodcock (UK)

We thank NWO and FME for sponsoring the invited lectures, IPA for sponsoring
the welcome reception, and BCS-FACS for sponsoring the best paper awards.

N#O

Netherlands Organisation for Scientific Research

External Referees

Besides the Program Committee members, several external anonymous referees
read the submitted papers. Without their help, the conference would have been
of a lesser quality. The following is a list, to the best of our knowledge, of external
referees.

Bernhard Aichernig
Pascal André
Victor Bos
Chunging Chen
Neil Evans

David Faitelson
Lars Grunske

Ping Hao

Bart Jacobs
Hironobu Kuruma
Alistair McEwan
Sotiris Moschoyiannis
Stephane Lo Presti
Ivan Porres Paltor
Jean-Claude Reynaud
Rimvydas Ruksenas

Preface VIl

Colin Snook
Yasuyuki Tahara
Nikolai Tillmann
Leonidas Tsiopoulos
G. Vidal-Naquet
James Welch
Hirokazu Yatsu

Lecture Notes in Computer Science

For information about Vols. 1-3698

please contact your bookseller or Springer

Vol. 3807: M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Kr-
ishnaswamy, Z. Pan, Q.Z. Sheng (Eds.), Web Information
Systems — WISE 2005 Workshops. XV, 275 pages. 2005.

Vol. 3806: A.H. H. Ngu, M. Kitsuregawa, E.J. Neuhold,
J.-Y. Chung, Q.Z. Sheng (Eds.), Web Information Systems
Engineering — WISE 2005. XXI, 771 pages. 2005.

Vol. 3799: A. Rodriguez, L.E Cruz, S. Levashkin (Eds.),
GeoSpatial Semantics. X, 259 pages. 2005.

Vol. 3793: T. Conte, N. Navarro, W.-m.W. Hwu, M. Valero,
T. Ungerer (Eds.), High Performance Embedded Architec-
tures and Compilers. XIII, 317 pages. 2005.

Vol. 3792: 1. Richardson, P. Abrahamsson, R. Messnarz
(Eds.), Software Process Improvement. VIII, 215 pages.
2005.

Vol. 3791: A. Adi, S. Stoutenburg, S. Tabet (Eds.), Rules
and Rule Markup Languages for the Semantic Web. X,
225 pages. 2005.

Vol. 3790: G. Alonso (Ed.), Middleware 2005. XIII, 443
pages. 2005.

Vol. 3789: A. Gelbukh, A. de Albornoz, H. Terashima-
Marin (Eds.), MICAI 2005: Advances in Atrtificial Intel-
ligence. XX VI, 1198 pages. 2005. (Subseries LNAI).

Vol. 3785: K.-K. Lau, R. Banach (Eds.), Formal Methods
and Software Engineering. XIV, 496 pages. 2005.

Vol. 3784: J. Tao, T. Tan, R.W. Picard (Eds.), Affective
Computing and Intelligent Interaction. XIX, 1008 pages.
2005.

Vol. 3781: S.Z. Li, Z. Sun, T. Tan, S. Pankanti, G. Chollet,

D. Zhang (Eds.), Advances in Biometric Person Authen-
tication. XI, 250 pages. 2005.

Vol. 3780: K. Yi (Ed.), Programming Languages and Sys-
tems. XI, 435 pages. 2005.

Vol. 3779: H. Jin, D. Reed, W. Jiang (Eds.), Network and
Parallel Computing. XV, 513 pages. 2005.

Vol. 3777: O.B. Lupanov, O.M. Kasim-Zade, A.V.
Chaskin, K. Steinhofel (Eds.), Stochastic Algorithms:
Foundations and Applications. VIII, 239 pages. 2005.

Vol. 3775: J. Schonwiilder, J. Serrat (Eds.), Ambient Net-
works. XIII, 281 pages. 2005.

Vol. 3773: A.S. Cortés, M.L. Cortés (Eds.), Progress in
Pattern Recognition, Image Analysis and Applications.
XX, 1094 pages. 2005.

Vol. 3772: M. Consens, G. Navarro (Eds.), String Process-
ing and Information Retrieval. XIV, 406 pages. 2005.

Vol. 3771: .M. T. Romijn, G.P. Smith, J. van de Pol (Eds.),
Integrated Formal Methods. XI, 407 pages. 2005.

Vol. 3770: J. Akoka, S.W. Liddle, I.-Y. Song, M.
Bertolotto, I. Comyn-Wattiau, W.-J. van den Heuvel, M.
Kolp, J.C. Trujillo, C. Kop, H.C. Mayr (Eds.), Perspectives
in Conceptual Modeling. XXII, 476 pages. 2005.

Vol. 3768: Y.-S. Ho, H.J. Kim (Eds.), Advances in Mulit-
media Information Processing - PCM 2005, Part II.
XXVIII, 1088 pages. 2005.

Vol. 3767: Y.-S. Ho, H.J. Kim (Eds.), Advances in
Mulitmedia Information Processing - PCM 2005, Part 1.
XXVIII, 1022 pages. 2005.

Vol. 3766: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 231
pages. 2005.

Vol. 3765: Y. Liu, T. Jiang, C. Zhang (Eds.), Computer
Vision for Biomedical Image Applications. X, 563 pages.
2005.

Vol. 3764: S. Tixeuil, T. Herman (Eds.), Self-Stabilizing
Systems. VIII, 229 pages. 2005.

Vol. 3762: R. Meersman, Z. Tari, P. Herrero (Eds.), On the
Move to Meaningful Internet Systems 2005: OTM Work-
shops. XXXI, 1228 pages. 2005.

Vol. 3761: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part I1. XXVII, 653 pages. 2005.

Vol. 3760: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part I. XXVII, 921 pages. 2005.

Vol. 3759: G. Chen, Y. Pan, M. Guo, J. Lu (Eds.), Parallel
and Distributed Processing and Applications - ISPA 2005
Workshops. X111, 669 pages. 2005.

Vol. 3758: Y. Pan, D. Chen, M. Guo, J. Cao, J. Dongarra
(Eds.), Parallel and Distributed Processing and Applica-
tions. XXIII, 1162 pages. 2005.

Vol. 3757: A. Rangarajan, B. Vemuri, A.L. Yuille (Eds.),
Energy Minimization Methods in Computer Vision and
Pattern Recognition. XII, 666 pages. 2005.

Vol. 3756: J. Cao, W. Nejdl, M. Xu (Eds.), Advanced Par-
allel Processing Technologies. XIV, 526 pages. 2005.

Vol. 3754: J. Dalmau Royo, G. Hasegawa (Eds.), Man-
agement of Multimedia Networks and Services. XII, 384
pages. 2005.

Vol. 3753: O.F. Olsen, L.M.J. Florack, A. Kuijper (Eds.),
Deep Structure, Singularities, and Computer Vision. X,
259 pages. 2005. -

Vol. 3752: N. Paragios, O. Faugeras, T."Chan, C. Schnorr
(Eds.), Variational, Geometric, and Level Set Methods in
Computer Vision. XI, 369 pages. 2005.

Vol. 3751: T. Magedanz, E.R. M. Madeira, P. Dini (Eds.),
Operations and Management in IP-Based Networks. X,
213 pages. 2005.

Vol. 3750: J.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part II. XL, 1018 pages. 2005.

Vol. 3749: J.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part I. XXXIX, 942 pages. 2005.

Vol. 3748: A. Hartman, D. Kreische (Eds.), Model Driven
Architecture — Foundations and Applications. 1X, 349
pages. 2005.

Vol. 3747 C:X&: Maziero, J.G. Silva, A.M.S. Andrade,
FM.d. Assis Silva (Eds.), Dependable Computing. XV,
267 pages. 2005.

Vol. 3746: P. Bozanis, E.N. Houstis (Eds.), Advances in
Informatics. XIX, 879 pages. 2005.

Vol. 3745: J.L. Oliveira, V. Maojo, F. Martin-Sénchez, A.S.
Pereira (Eds.), Biological and Medical Data Analysis. XII,
422 pages. 2005. (Subseries LNBI).

Vol. 3744: T. Magedanz, A. Karmouch, S. Pierre, 1. Ve-
nieris (Eds.), Mobility Aware Technologies and Applica-
tions. XIV, 418 pages. 2005.

Vol. 3740: T. Srikanthan, J. Xue, C.-H. Chang (Eds.),
Advances in Computer Systems Architecture. XVII, 833
pages. 2005.

Vol. 3739: W. Fan, Z.-h. Wu, J. Yang (Eds.), Advances
in Web-Age Information Management. XXIV, 930 pages.
2005.

Vol. 3738: V.R. Syrotiuk, E. Chavez (Eds.), Ad-Hoc, Mo-
bile, and Wireless Networks. XI, 360 pages. 2005.

Vol. 3735: A. Hoffmann, H. Motoda, T. Scheffer (Eds.),
Discovery Science. XVI, 400 pages. 2005. (Subseries
LNAI).

Vol. 3734: S. Jain, H.U. Simon, E. Tomita (Eds.), Algo-
rithmic Learning Theory. XII, 490 pages. 2005. (Subseries
LNAI).

Vol. 3733: P. Yolum, T. Giingér, F. Giirgen, C. Ozturan

(Eds.), Computer and Information Sciences - ISCIS 2005. -

XXI, 973 pages. 2005.

Vol. 3731: F. Wang (Ed.), Formal Techniques for Net-
worked and Distributed Systems - FORTE 2005. XI1I, 558
pages. 2005.

Vol. 3729: Y. Gil, E. Motta, V. R. Benjamins, M.A. Musen
(Eds.), The Semantic Web — ISWC 2005. XXIII, 1073
pages. 2005.

Vol. 3728: V. Paliouras, J. Vounckx, D. Verkest (Eds.), In-
tegrated Circuit and System Design. XV, 753 pages. 2005.

Vol. 3726: L.T. Yang, O.F. Rana, B. Di Martino, J. Don-
garra (Eds.), High Performance Computing and Commu-
nications. XX VI, 1116 pages. 2005.

Vol. 3725: D. Borrione, W. Paul (Eds.), Correct Hardware
Design and Verification Methods. XII, 412 pages. 2005.

Vol. 3724: P. Fraigniaud (Ed.), Distributed Computing.
X1V, 520 pages. 2005.

Vol. 3723: W. Zhao, S. Gong, X. Tang (Eds.), Analysis and
Modelling of Faces and Gestures. XI, 4234 pages. 2005.

Vol. 3722: D. Van Hung, M. Wirsing (Eds.), Theoretical
Aspects of Computing — ICTAC 2005. XIV, 614 pages.
2005.

Vol. 3721: A. Jorge, L. Torgo, P.B. Brazdil, R. Camacho, J.
Gama (Eds.), Knowledge Discovery in Databases: PKDD
2005. XXIII, 719 pages. 2005. (Subseries LNAI).

Vol. 3720: J. Gama, R. Camacho, P.B. Brazdil, A. Jorge,
L. Torgo (Eds.), Machine Learning: ECML 2005. XXIII,
769 pages. 2005. (Subseries LNAI).

Vol. 3719: M. Hobbs, A.M. Goscinski, W. Zhou (Eds.),
Distributed and Parallel Computing. XI, 448 pages. 2005.

Vol. 3718: V.G. Ganzha, E-W. Mayr, E.V. Vorozhtsov
(Eds.), Computer Algebra in Scientific Computing. XII,
502 pages. 2005.

Vol. 3717: B. Gramlich (Ed.), Frontiers of Combining Sys-
tems. X, 321 pages. 2005. (Subseries LNAI).

Vol. 3716: L. Delcambre, C. Kop, H.C. Mayr, J. Mylopou-

los, O. Pastor (Eds.), Conceptual Modeling — ER 2005.
XVI, 498 pages. 2005.

Vol. 3715: E. Dawson, S. Vaudenay (Eds.), Progress in
Cryptology — Mycrypt 2005. XI, 329 pages. 2005.

Vol. 3714: H. Obbink, K. Pohl (Eds.), Software Product
Lines. XIII, 235 pages. 2005.

Vol. 3713: L.C. Briand, C. Williams (Eds.), Model Driven
Engineering Languages and Systems. XV, 722 pages.
2005.

Vol. 3712: R. Reussner, J. Mayer, J.A. Stafford, S. Over-
hage, S. Becker, P.J. Schroeder (Eds.), Quality of Soft-
ware Architectures and Software Quality. XIII, 289 pages.
2005.

Vol. 3711: F. Kishino, Y. Kitamura, H. Kato, N. Nagata
(Eds.), Entertainment Computing - ICEC 2005. XXIV,
540 pages. 2005.

Vol. 3710: M. Barni, I. Cox, T. Kalker, H.J. Kim (Eds.),
Digital Watermarking. XII, 485 pages. 2005.

Vol. 3709: P. van Beek (Ed.), Principles and Practice of
Constraint Programming - CP 2005. XX, 887 pages. 2005.

Vol. 3708: J. Blanc-Talon, W. Philips, D.C. Popescu, P.
Scheunders (Eds.), Advanced Concepts for Intelligent Vi-
sion Systems. XXII, 725 pages. 2005.

Vol. 3707: D.A. Peled, Y.-K. Tsay (Eds.), Automated Tech-
nology for Verification and Analysis. XII, 506 pages. 2005.

Vol. 3706: H. Fuks, S. Lukosch, A.C. Salgado (Eds.),
Groupware: Design, Implementation, and Use. XII, 378
pages. 2005.

Vol. 3704: M. De Gregorio, V. Di Maio, M. Frucci, C.
Musio (Eds.), Brain, Vision, and Atrtificial Intelligence.
XV, 556 pages. 2005.

Vol. 3703: F. Fages, S. Soliman (Eds.), Principles and
Practice of Semantic Web Reasoning. VIII, 163 pages.
2005.

Vol. 3702: B. Beckert (Ed.), Automated Reasoning with

Analytic Tableaux and Related Methods. X111, 343 pages.
2005. (Subseries LNAI).

Vol. 3701: M. Coppo, E. Lodi, G. M. Pinna (Eds.), Theo-
retical Computer Science. XI, 411 pages. 2005.

Vol. 3700: J.F. Peters, A. Skowron (Eds.), Transactions or
Rough Sets IV. X, 375 pages. 2005.

Vol. 3699: C.S. Calude, M.J. Dinneen, G. Piun, M.
J. Pérez-Jiménez, G. Rozenberg (Eds.), Unconventional
Computation. XI, 267 pages. 2005.

£ 68432 >

Table of Contents

Invited Papers

A Family of Mathematical Methods for Professional Software
Documentation
David Lorge Parmascucvims ioims sosmsms s meomsns s6igs smims

Generating Path Conditions for Timed Systems
Saddek Bensalem, Doron Peled, Hongyang Qu,
Stavros Tripakis

Software Model Checking: Searching for Computations in the Abstract
or the Concrete
Patrice Godefroid, Nils Klarlund

Session: Components

Adaptive Techniques for Specification Matching in Embedded Systems:
A Comparative Study
Robi Malik, Partha S. ROOP vvcceriiwnininsissvvsmsnnanmennss

Session: State/Event-Based Verification

State/Event Software Verification for Branching-Time Specifications
Sagar Chaki, Edmund Clarke, Orna Grumberg, Joél Ouaknine,
Natasha Sharygina, Tayssir Touili, Helmut Veith..................

Exp.Open 2.0: A Flexible Tool Integrating Partial Order,
Compositional, and On-The-Fly Verification Methods
Frédéric Lang

Chunks: Component Verification in CSP||B
Steve Schneider, Helen Treharne, Neil Fvans

Session: System Development

Agile Formal Method Engineering
Richard F. Paige, Phillip J. Brooke

20

33

53

70

89

X Table of Contents

An Automated Failure Mode and Effect Analysis Based on High-Level
Design Specification with Behavior Trees

Lars Grunske, Peter Lindsay, Nisansala Yatapanage,

Kirsten Winter o

Enabling Security Testing from Specification to Code
Shane Bracher, Padmanabhan Krishnan

Session: Applications of B

Development of Fault Tolerant Grid Applications Using
Distributed B
Pontus Bostrém, Marina Waldén

Formal Methods Meet Domain Specific Languages
Jean-Paul Bodeveiz, Mamoun Filali, Julia Lawall,
Gilles Muller ssnminsonsmsaminsms i0ims imiEs TR SHHeIRH8 10 1di

Synthesizing B Specifications from EB? Attribute Definitions
Frédéric Gervais, Marc Frappier, Régine Laleav,

Session: Tool Support

CZT Support for Z Extensions
Tim Miller, Leo Freitas, Petra Malik, Mark Utting

Embedding the Stable Failures Model of CSP in PVS
Kun Wei, James Heather i iiiiiiiininn...

Model-Based Prototyping of an Interoperability Protocol for Mobile
Ad-Hoc Networks

Lars M. Kristensen, Michael Westergaard,

Peder Christian Ngrgaardc0 e ..

Session: Non-software Domains

Translating Hardware Process Algebras into Standard Process
Algebras: Illustration with CHP and LOTOS
Gwen Salatin, Wendelin Serwecciiiiiiiiein...

Formalising Interactive Voice Services with SDL
KENHEtN Jo LUTNET 5: cusiws smin: s0i0: 10 G SHs R ABH SRR SHiEE 10

Table of Contents

Session: Semantics

A Fixpoint Semantics of Event Systems With and Without Fairness
Assumptions
Héctor Ruiz Barradas, Didier Bertccouiiiiiinini...

Session: UML and Statecharts

Consistency Checking of Sequence Diagrams and Statechart Diagrams
Using the 7-Calculus
Vitus S.W. Lam, Julian Padget 0. ..

An Integrated Framework for Scenarios and State Machines
Bikram Sengupta, Rance Cleaveland

Consistency in UML and B Multi-view Specifications

Dieu Donné Okalas Ossami, Jean-Pierre Jacquot,
JEANINE SOUGUIETES : s smsms ami BI0HIREDS SHEHE SHIEE THE b fmbmonsman

Author Index

XI

A Family of Mathematical Methods for Professional
Software Documentation

David Lorge Parnas

Software Quality Research Laboratory (SQRL),
Department of Computer Science and Information Systems,
Faculty of Informatics and Electronics,
University of Limerick, Limerick, Ireland

1 Introduction

The movement to integrate mathematically based software development methods is a
predictable response to the fact that none of the many methods available seems
sufficient to do the whole job (whatever that may be) on its own. This talk argues that
integrating separately developed methods is not the most fruitful possible approach.
Instead we propose a family of methods, based on a common model, designed to be
complementary and mutually supportive.

The method family being developed at the Software Quality Research Lab at the
University of Limerick is characterised by two major decisions:

o Software developers must prepare and maintain a set of documents whose content
(not format) is specified by the relational model presented in [3].
o The relations are represented using mathematical expressions in tabular form. [5].

This talk will motivate these decisions, describe the model, illustrate the concept of
tabular expressions, and discuss the uses of such documents in software development.

2 Why We Need Better Software Development Documentation

Software has its, well earned, bad reputation in large part because developers do not
provide an appropriate set of design documentation. When developers are trying to
extend, correct, or interface with a piece of software, they need detailed information
that is both precise and correct. This information is usually hard to find, missing,
imprecisely expressed, or simply wrong. Some developers estimate that they spend
80% of their time seeking information about existing software. When they don’t have
an interface description, they often use implementation information that is subject to
change. The result is software in which small changes have surprising effects.

Engineers who design physical products are taught how to use mathematics to
specify properties of their products and analyse their designs. Software developers
simply do not know how to do that and their managers do not expect them to do it. In
fact, the profession doesn’t know how to do it. Finding ways to use mathematics to
produce precise, well-organized development documentation should be a major
research effort.

J. Romijn, G. Smith, and J. van de Pol (Eds.): [FM 2005, LNCS 3771, pp. 14, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 D.L. Parnas

3 Why Models are not Generally Descriptions

It has become fashionable to propose the use of “model based development” (MBT)
to solve some of these problems. Formal looking' models are prepared to express
design decisions. Unfortunately, these models do not constitute documentation; to
understand why, it is important to distinguish between descriptions, specifications,
and models.

* Adescription of a product provides accurate information about that product.

* A specification is a description that states all of the requirements but contains no
other information.

* A model has some of the properties of the product-of-interest but may also have
properties that differ from those of the product. Some models are themselves
products, but here we are concerned primarily with mathematical models.

We use the word “document” to mean either a specification or another description.

It is important to note that the above are statements of intent, most attempts at
descriptions are not completely accurate and it is very difficult to write a complete
specification (using any method).

* A description of a product provides information about that product. A single
description need not be complete; we can use a collection of descriptions.
However, everything that the description states must be true of the product, else
the description is wrong. A description is only useful if it is easier to derive
information from the description than to derive it from the product itself.

« If a specification is correct but not an accurate description of a product, it is the
product that is wrong. If the specification is true of a product, but the product is not
satisfactory, the specification must be wrong (either inaccurate or Jjust incomplete).
If the specification is not true of a product, but the product is satisfactory, the
specification is deficient (either an overspecification or incorrect).

» A model is something with some of the properties of a product; however, not all
of the model’s properties need be true of the product itself. A model may not be a
specification or a description. Models are potentially dangerous because one can
derive information from a model that is not true of the product. All information
that is based on a model must be taken “with a grain of salt”.

4 No New Mathematics

For the work described in the remainder of the talk, there is no new mathematics; we
have merely found new ways to apply classical mathematical concepts. This is
common in Engineering research.

The logic used is very close to the classical logic presented in textbooks. Our only
deviation from the most basic logic is that the meaning of predicates involving partial
functions is fully defined (predicates are total). [2]

We make heavy use of the concepts of function (including functions of time) and
relation. We represent functions in the traditional way, using mathematical expressions.

"' The meaning of these models is often not precisely defined.

A Family of Mathematical Methods for Professional Software Documentation 3

Relations that are not functions are represented by giving the characteristic predicate of
the set of ordered pairs, again using a mathematical expression. The use of the
relational model in [3] is the most basic innovation in our work.

The only mathematics that may appear new is our use of a multi-dimensional
format for expression, which we call tabular expressions. These are no more
“powerful” than traditional expressions; in fact, we define their meaning by telling
how to construct an equivalent traditional expression. The advantage is purely
notational; For the class of functions/relations of interest to us, the tabular form of the
expression is usually easier to construct, check and read. The talk provides numerous
illustrations of this notation.

5 Need for Document Definitions

When industrial developers take the time to write a basic document such as a
requirements document, there are often debates about what should be in it. While,
there is a plethora of standards in the software field, those standards detail format and
structure but not contents. As a result, even documents that satisfy standards, usually
lack essential information. The standards provide no way of saying that a document is
complete. When we had produced the first such [1], there was widespread agreement
that it was an unusually useful document, but strong disagreement about which
standard it satisfied. In contrast, many documents that fully satisfied the standards that
were in place were not found useful because they did not contain essential
information.
In [1] we have proposed definitions of the following documents:

“System Requirements Document”- Treats computer systems as “‘black-box”.
“System Design Document”- Describes computers and communication.
“Software Requirements Document” - Describes required software behaviour
“Software Function Specification”: Describes actual software behaviour.
“Software Module Guide”: How to find your module. (informal document).
“Module Interface Specifications”: Treats each module as black-box.

“Uses Relation Document”: Range and domain comprise module programs.
“Module Internal Design Documents”: Describe data structure and programs.

AN A B W

For each of the above except 5, which is informal, we have stated what variables
should be defined in the document and what relations must be represented/defined by
the document. These definitions provide an unambiguous basis for deciding what
should be contained in a document. Documents may still be incomplete, but we can
identify the missing information and check for important properties.

6 Tabular Notation

Although conventional mathematical notation is capable of describing the functions
and relations called for by our definitions, many find those expressions very hard to
parse. Documents written using conventional notation are precise but difficult to
review and not very useful as reference documents. This is because the nature of the

4 D.L. Parnas

functions that we encounter in software. Traditional engineering mathematics stresses
functions that are continuous and differentiable. With digital computers we implement
functions that approximate piecewise-continuous functions. Through experience we
have discovered that multi-dimensional forms of expressions are well suited to this
class of functions. Many practical applications have shown that tabular expressions
are better accepted, more easily prepared, more easily checked, and more useful than
the conventional expressions that they replace. Of course, conventional expressions
are still essential: (1) the innermost cells of a tabular expression always contain
conventional expressions and (2) our new approach to defining the meaning of these
expressions shows how to transform it to an equivalent conventional expression.

The last point is important. Many who see these expressions find them simpler and
easier to read than “formal method” examples and assume that they are somehow less
formal than other methods. Formality need not mean “hard to read”. Tabular
expressions are just as formal as the conventional expressions that they replace.

7 Practical Advantages of Mathematics

The fact that our documents are based on conventional mathematics has a great many
practical advantages. It allows us to use existing theorem proving programs to check
tables for consistency and completeness, to use computer algebra systems to
transform and simplify documents, to evaluate expressions when simulating
something that we have specified, to generate test oracles from specifications, and to
generate test cases based on black box documents. We have also found these
documents extremely valuable for inspecting critical software. [4]

8 Future Work

Based on our new, much more general (yet simpler) definition of tabular expressions,
we are building a new generation of tools to support the use of this approach.

References

[1] Heninger, K., Kallander, J., Parnas, D.L., Shore, J., “Software Requirements for the A-7E
Aircraft”, NRL Report 3876, November 1978, 523 pgs.

[2] Pamnas, D.L., “Predicate Logic for Software Engineering”, IEEE Transactions on Software
Engineering, Vol. 19, No. 9, September 1993, pp. 856 - 862 Reprinted as Chapter 3 in [6]

[3] Parnas, D.L., Madey, J., “Functional Documentation for Computer Systems Engineering”
Science of Computer Programming (Elsevier) vol. 25, no. 1, Oct. 1995, pp 41-61

[4] Parnas, D.L. “Inspection of Safety Critical Software using Function Tables”, Proceedings
of IFIP World Congress 1994, Volume III”” August 1994, pp. 270 - 277. Also Ch. 19 in [6]

[5] Janicki, R., Parnas, D.L., Zucker, J., “Tabular Representations in Relational Documents”,
Chapter 12 in “Relational Methods in Computer Science”, Ed. C. Brink and G, Schmidt.
Springer Verlag, pp. 184 - 196, 1997, ISBN 3-211-82971-7. Reprinted as Chapter 4 in [6].

[6] Hoffman, D.M., Weiss, D.M. (eds.), “Software Fundamentals: Collected Papers by David
L. Parnas”, Addison-Wesley, 2001, 664 pgs., ISBN 0-201-70369-6.

Generating Path Conditions for Timed Systems

Saddek Bensalem!, Doron Peled?*, Hongyang Qu?, and Stavros Tripakis!

! Verimag, 2 Avenue de Vignate, 38610 Gieres, France
2 Department of Computer Science, University of Warwick,
Coventry, CV4 TAL United Kingdom

Abstract. We provide an automatic method for calculating the path
condition for programs with real time constraints. This method can be
used for the semiautomatic verification of a unit of code in isolation, i.e.,
without providing the exact values of parameters with which it is called.
Our method can also be used for the automatic generation of test cases
for unit testing. The current generalization of the calculation of path
condition for the timed case turns out to be quite tricky, since not only
the selected path contributes to the path condition, but also the timing
constraints of alternative choices in the code.

1 Introduction

Software testing often involves the use of informal intuition and reasoning. But
it is possible to employ some formal methods techniques and provide tools to
support it. Such tools can help in translating the informal ideas and intuition
into formal specification, assist in searching the code, support the process of
inspecting it and help analyzing the results. A tester may have a vague idea where
problems in the code may occur. The generation of a condition for a generated
suspicious sequence may help the tester to confirm or refute such a suspicion.
Such a condition relates the variables at the beginning of the sequence. Starting
the execution with values satisfying this condition is necessary to recreate the
execution.

We generalize the calculation of a path condition, taking into account only
the essential conditions to follow a particular path in the execution. We start
with a given path merely from practical consideration; it is simpler to choose a
sequence of program statements to execute. However, we look at the essential
partial order, which is consistent with the real-time constraints, rather than at
the total order. We cannot assume that transitions must follow each other, unless
this order stems from some sequentiality constraints such as transitions belonging
to the same process or using the same variable or from timing constraints.

For untimed systems, there is no difference between the condition for the
partial order execution and the condition to execute any of the sequences (lin-
earizations) consistent with it. Because of commutativity between concurrently

* This research was partially supported by Subcontract UTA03-031 to The University
of Warwick under University of Texas at Austin’s prime National Science Foundation
Grant #CCR-0205483.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 5-19, 2005.
© Springer-Verlag Berlin Heidelberg 2005

