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Preface

Three series of lectures were given at the 31st Probability Summer School in
Saint-Flour (July 8 25, 2001), by the Professors Catoni, Tavaré and Zeitouni.
In order to keep the size of the volume not too large, we have decided to
split the publication of these courses into two parts. This volume contains
the course of Professor Catoni. The courses of Professors Tavaré and Zeitouni
have been published in the Lecture Notes in Mathematics. We thank all the
authors warmly for their important contribution.

55 participants have attended this school. 22 of them have given a short
lecture. The lists of participants and of short lectures are enclosed at the end

of the volume.

Finally, we give the numbers of volumes of Springer Lecture Notes where
previous schools were published.

Lecture Notes in Mathematics

1971: vol 307 1973: vol 390 1974: vol 480 1975: vol 539
1976: vol 598 1977: vol 678 1978: vol 774 1979: vol 876
1980: vol 929 1981: vol 976 1982: vol 1097 1983: vol 1117
1984: vol 1180 1985/86/87: vol 1362 1988: vol 1427 1989: vol 1464
1990: vol 1527 1991: vol 1541 1992: vol 1581 1993: vol 1608
1994: vol 1648 1995: vol 1690 1996: vol 1665 1997: vol 1717
1998: vol 1738 1999: vol 1781 2000: vol 1816 2001: vol 1837

2002: vol 1840
Lecture Notes in Statistics

1986: vol 50

Jean Picard, Université Blaise Pascal
Chairman of the summer school
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Introduction!

The main purpose of these lectures will be to estimate a probability distribu-
tion P € ML(Z) from an observed sample (Z1, ..., Zy) distributed according
to P®N. (The notation M (Z,F) will stand throughout these notes for the
set of probability distributions on the measurable space (Z,F) — the sigma-
algebra J will be omitted when there is no ambiguity about its choice). In
a regression estimation problem, Z; = (X;,Y;) € X x Y will be a set of two
random variables, and the distribution to be estimated will rather be the con-
ditional probability distribution P(dY | X), or even only its mode (when Y is
a finite set) or its mean (when Y = R is the real line). A large number of
pattern recognition problems could be formalized within this framework. In
this case, the random variable Y; takes a finite number of values, representing
the different “labels” into which the “patterns” X, are to be classified. The
patterns may for instance be digital signals or images.
A major role will be played in our study by the risk function

Ep (mg g) if P<Q

400 otherwise

R(Q) = X(P,Q) = { . QeML().

Let us remind that the function X is known as the Kullback divergence
function, or relative entropy, that it is non negative and cancels only on the
set P = (). To see this, it is enough to remember that, whenever it is finite,
the Kullback divergence can also be expressed as

P P P
K(P,Q)=Eg [1 — — + — log (—)J
QR «Q Q
and that the map r — 1 —r + rlog(r) is non negative, strictly convex on R
and cancels only at point r = 1.
1 T would like to thank the organizers of the Saint-Flour summer school for making

possible this so welcoming and rewarding event year after year. I am also grateful
to the participants for their kind interest and their useful comments.



2 Introduction

In the case of regression estimation and pattern recognition, we will also
use risk functions of the type

R() = E[(f(X),Y)],  [:X—Y,

where d is a non negative function measuring the discrepancy between Y and
its estimate f(X) by a function of X. We will more specifically focuss on two
loss functions : the quadratic risk (1(f(X). Y) = (f(X)—Y)?in the case when
Y = R, and the error indicator function d(f(X),Y) = L(f(X) # Y) in the
case of pattern recognition.

Our aim will be to prove, for well chosen estimators f’(Zl....,ZN) S
ML (2) [resp. f(Ziynnn, Zn) € L(X,Y)], non asymptotic oracle inequalities.
Oracle inequalities is a point of view on statistical inference introduced by
David Donoho and Iain Johnstone. It consists in making no (or few) restrictive
assumptions on the nature of the distribution P of the observed sample, and
to restrict instead the choice of an estimator P to a subset {Py : 0 € @} of
the set MY (2) of all probability distributions defined on Z [resp. to restrict
the choice of a regression function f to a subset {fy : 0 € O} of all the
possible measurable functions from X to Y]. The estimator P is then required
to approximate P almost as well as the best distribution in the estimator
set {Py : 6 € O} [resp. The regression function f is required to minimize as
much as possible the risk R(fy), within the regression model {fy : § € O}].
This point of view is well suited to “complex” data analysis (such as speach
recognition, DNA sequence modeling, digital image processing, ...) where it
is crucial to get quantitative estimates of the performance of approximate and
simplified models of the observations.

Another key idea of this set of studies is to adopt a “pseudo-Bayesian”
point of view, in which P is not required to belong to the reference model
{Py : 6 € O} [resp. f is not required to belong to {fy : 0 € O©}]. Instead P
is allowed to be of the form P(Zl ..... ZN) = Er’nzl., ”ZM(,“,)(P;;). [resp. f is

allowed to be of the form f = E;a0)(fo)], where pz, . z.)(d0) € ML(Z) is
a posterior parameter distribution, that is a probability distribution on the
parameter set depending on the observed sample.

We will investigate three kinds of oracle inequalities, under different sets
of hypotheses. To simplify notations, let us put

R(Zy,....Zn) = R(P(Z, ..., Zn)) [resp. R(f(Z1, ..., Zw))],
and Ry = R(FPy) [resp. R(fq)].

e Upper bounds on the cumulated risk of individual sequences of
observations. In the pattern recognition case, these bounds are of the
type :

~

N
SVt £ T 2 (X))
k=0

N



Introduction 3

N

< inf {C'ﬁ Zﬂ[ ki1 # fo(Xeg1)] +7(6, N)}~

feO
k=0

Similar bounds can also be obtained in the case of least square regression
and of density estimation. Integrating with respect to a product probability
measure P@V+1) Jeads to

ZEM R(Zy,...,Zy)] < inf {CRy +5(6,N)}.

k=0

N+1

Here, v(6, N) is an upper bound for the estimation error, due to the fact
that the best approximation of P within {Py : # € @} is not known to the
statistician. From a technical point of view, the size of v(#, N) depends on
the complerity of the model {Fy : §# € @} in which an estimator is sought.
In the extreme case when @ is a one point set. it is of course possible to take
v(#, N) = 0. The constant C' will be equal to one or greater. depending
on the type of risk function to be used and on the type of the estimation
bound (@, N). These inequalities for the cumulated risk will be deduced
from lossless data compression theory, which will occupy the first chapter
of these notes.
e Upper bounds for the mean non cumulated risk, of the type

E[R(Zy,.... Zy)] < ”ig(g{cm +7(6,N)}.

Obtaining such inequalities will not come directly from compression theory
and will require to build specific estimators. Proofs will use tools akin
to statistical mechanics and bearing some resemblance to deviation (or
concentration) inequalities for product measures.

e Deviation inequalities, of the type

P*’-N{f?(zl. o ZN) > inf [(‘R(; + (6, N.e)}} < e
=)

These inequalities, obtained for a large class of randomazed estimators, pro-
vide an empirical measure (6, N, €) of the local complexity of the model
around some value 6 of the parameter. Through them, it is possible to
make a link between randomized estimators and the method of penalized
likelihood maximization. or more generaly penalized empirical risk mini-
mization.

-

In chapter 7, we will study the behaviour of Markov chains with “rare”
transitions. This is a clue to estimate the convergence rate of stochastic sim-
ulation and optimization methods, such as the Metropolis algorithm and
simulated annealing. These methods are part of the statistical learning pro-

gram sketched above, since the posterior distributions on the parameter space
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(7, ....zn) We talked about have to be estimated in practice and cannot, ex-
cept in some special important cases, be computed exactly. Therefore we have
to resort to approximate simulation techniques, which as a rule consist in
simulating some Markov chain whose invariant probability distribution is the
one to be simulated. Those posterior distributions used in statistical inference
are hopefully sharply concentrated around the optimal values of the parame-
ter when the observed sample size is large enough. Consequently, the Markov
chains under which they are invariant have uneven transition rates, some
of them being a function of the sample size converging to zero at exponen-
tial speed. This is why they fall into the category of (suitably generalized)
Metropolis algorithms. Simulated annealing is a variant of the Metropolis al-
eorithm where the rare transitions are progressively decreased to zero as time
flows, resulting in a nonhomogeneous Markov chain which may serve as a
stochastic (approximate) maximization algorithm and is useful to compute in
some cases the mode of the posterior distributions we already alluded to.
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Universal lossless data compression

1.1 A link between coding and estimation

1.1.1 Coding and Shannon entropy

We consider in this chapter a finite set F, called in this context the alphabet,
and a E valued random process (X,,),en-

The problem of lossless compression is to find, for each input length N, a
“code” ¢ that is a one to one map

c: BN — {01}

where {0,1}* = U:JL:I{O 1}"™ stands for the set of finite sequences of zeros
and ones with arbitrary length. Given any s € {0, 1}*, its length will be noted
((s). It is defined by the relation s € {0,1}%).

We will look for codes with the lowest possible mean length

E(P((-(Xl, XN))). (1.1.1)

If no other requirements are imposed on ¢, the optimal solution to this
problem is obviously to sort the blocks of length N, (1, ..., xyn) in de-
creasing order according to their probability to be equal to (X;,..., Xn). Let

(b,,-,),|,-:|I be such an ordering of EV | which satisfies

IP<(X1. cens Xn) :b,) gn’((xl, LX) :b,-,l). i=2, ..., |EN.
Let us introduce
. Logy (i41) | —1
def z 1 = .
B(i) Lef ({[‘—; J mod 2) , i=1, ..., |E",
- j=0

the binary representation of ¢ + 1 from which the leftmost bit (always equal
to 1) has been removed. The code
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def ¢
c(bi) = B(1) (1.1.2)
obviously minimizes (1.1.1). Indeed,

N* — {0,1}"
i — B(1)

is a bijection and i +— F(B(i)) is non decreasing. Starting with any given code,
we can modify it to take the same values as ¢ by exchanging binary words with
shorter ones taken from the values of (1.1.2). We can then exchange pairs of
binary words without increasing the code mean length to make it eventually
equal to (1.1.2), which is thus proved to be optimal.

The mean length of the optimal code, defined by equation (1.1.1), is linked
with Shannon’s entropy, defined below.

Definition 1.1.1. The Shannon entropy H(p) of a probability distribution
p, defined on a finite set X is the quantity

Zp r)log, (p(z)).
TEX

The notation log, stands for the logarithm function with base 2. Entropy is
thus measured in bits. It is a concave function of p, linked with the Kullback
Leibler divergence function with respect to the uniform distribution g on X
by the identity

H(p) = log, (1X]) - @x(p. )

It cancels on Dirac masses and is equal to log,(|X|) for u.
Let us recall a basic fact of ergodic theory :
Proposition 1.1.1. For any stationary source (X, ),en, the map

N — H(P(dX)) is sub-additive, proving the existence of the limit

o H(PAXY)  H(PAXY)) e .
e A e

which s called the (Shannon) entropy of the source (X, )nen.

Next proposition shows that Shannon’s entropy measures in first approx-
imation the optimal compression rate.

Proposition 1.1.2. For any finite source XN distributed according to P, the
mean length of the optimal code is such that

H(P(dX{))(1 =1/N) =1 —log,(N)

< sup lH(lP(dX{V))«IJrM < E(f(«(va))) < H(P(dX{))+1

a>1 & Y
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Thus, for any infinite stationary source (X, )nen with distribution IP,

H(P).

I

e e(ax)

Proof. Let us adopt the short notation
def
]P((Xl, ) XN) :b,—) et o(bs).

The chain of inequalities

E(((c(X1))) = 3 p(b) (logs(i + 1))

< —p(b:)logy (p(bi)) +1

=H(p)+1
shows that the mean length of the optimal code is upper-bounded by the
Shannon entropy of the distribution of blocks of length N (up to one bit at
most).

On the other hand, for any o > 1,

BN

B{efe(x)]} = 3 pibi) (loga(i+ 1)~ 1)

i=1
|E|Y

1 a—1 logy (v — 1)

- g n(b; ol — ] 14+ ——.

2 e ; p(b;) log, ((1 T 1)”> + o

We can then notice that b; — ﬁ is a sub-probability distribution. This
shows, along with the fact that the Kullback divergence is non-negative, that

|E|Y |ElY
a—1
— (b, g | S (b, y
;:l p(b;)log, ((i n 1),,) > ’E:] p(bi)log, (p(bi)).
and consequently that
) N 1 &= logy(a — 1)
]E((((-(Xl ))) > == >~ plbi) loga (p(b)) — 1+ —2——.
i=1

Then we can e.g. choose a = (1 — 1/N)~!, to obtain

]E{ﬁ[(-(XIN)]} > H(P(AXY))(1 - 1/N) — 1 — logy(N).
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It is to be remembered from this first discussion about lossless data com-
pression that it requires, to be done efficiently, a fairly precise knowledge of
the distribution of the source, and that for any stationary source of infinite
length, the optimal compression rate per symbol tends towards the entropy

H.

1.1.2 Instantaneous codes

In the previous sections, we have considered arbitrary binary codes, our pur-
pose being to show that the compression rate could not be significantly lower
than Shannon’s entropy, whatever choice of code is made. We are now going
to focus on the restricted family of prefiz codes, which share the property to
be instantaneously separable into words, when the codes for many blocks are
concatenated together before being sent through a transmission channel.

The optimal code (1.1.2), described previously, indeed suffers from a major
drawback : it cannot be used to code more than a single block. Indeed, if the
codes for two successive blocks of length N (or more) are concatenated to be
sent through a transmission channel, the receiver of this message will have no
mean to find out how it should be decomposed into block codes. Such a code
is called non separable, or non uniquely decodable or decipherable. Moreover,
even if only one block is to be transmitted, the receiver has no mean to know
whether the received message is completed, or whether more data should be
waited for (such a code is said to be non instantaneous).

Instantaneous codes have a very simple characterization : a code is instan-

taneous if and only if no codeword is the beginning of another codeword. For
this reason, such a code is also said to be a prefiz code.
Definition 1.1.2. We will say that a finite subset D C {0, 1}* of finite
binary words is a prefiz dictionary if any two distinct words af and bj of D
of respective lengths r < s are always such that a} # b}. In other words we
require that no word of the dictionary should be the prefix of another one.
We will say that the map

c: BN — {0, 1}*
is a prefix code if it is one to one with values in a prefix dictionary.
Proposition 1.1.3 (Kraft inequality). For any prefic dictionary D
3 2fm <,
meD

Proof. This inequality can be proved using a construction which will lead also
to arithmetic coding, to be described further below.

The set of finite binary sequences {0,1}* U {@} (where @ is the “void
sequence” of null length) can be put into one to one correspondence with the
set D of dyadic intervals, defined by
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D={k27", (k+1)2": neN, ke Nn[0,2"[},
putting for any sequence
s = (s,)f(;l) € {0,1}*,

J(s) e k27", (k+1)27"],

where n = {(s), k = Zf(:l 5i2"~" and putting moreover J(&) = [0, 1[.

It is then easy to see that no one of two codewords s and s’ is the prefix of
the other if and only if the corresponding dyadic intervals J(s) and J(s) are
disjoint. It immediately follows that the sum of the lengths of the intervals
attached to the words of a prefix dictionary cannot exceed one (because all
these dyadic intervals are subsets of the unit interval): this is precisely the
Kraft inequality. This proof also shows that the Kraft inequality.remains true

for infinite dictionaries. O

Proposition 1.1.4 (Inverse Kraft inequality). For any sequence (r;)L_, €
(N)T" of positive integers such that

T

Y sy,

i=1
there exists a prefix code
c: {1, ..., T} — {0,1}"

such that
e(@) =ri, i=1,...,T.

Proof. Without loss of generality, the sequence (r;)7 may be assumed to be
non decreasing. It is then easy to check that the intervals [, ;] defined by

i—1
e
o = g 277,
Jj=1
/},' =0y + 2_1.7,

are dyadic in the sense defined in the proof of the Kraft inequality. Moreover,
. . .\ def ~_ . :

they are obviously non overlaping. The code ¢(4) =7 Y([ei, Bi]) is therefore

a prefix code. Let us remark here again that this proof holds also for infinite

sequences. O

Definition 1.1.3. A prefix dictionary D is said to be complete (as well as
any code using such a dictionary) if it is maximal for the inclusion relation,
that is if any prefix dictionary D’ such that D C D’ is in fact equal to it.
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To a prefix dictionary D corresponds a binary tree, whose vertex set and
edge set are defined as

N=J{Ied: 3s)c1},
seD
A={U.I')eN*: I'CI}.

It is the same thing to say that the dictionary D is complete or that
the corresponding binary tree (N, A) is complete in the usual sense that its
vertices have either zero or two sons (in other words, any interior vertex has
exactly two sons).

Proposition 1.1.5 (Kraft equality). A prefiz dictionary D is complete if
and only if

Z 2—!(711) — 1.

meD

Proof. The tree (N, A) is complete if and only if the set F = {J(s) : s € D}
of its leaves is a partition of the unit interval [0, 1[.

Indeed, the two sons of I € N are the two half length dyadic intervals into
which it decomposes.

An interval I belongs to N if and only if it contains a leaf I’ € F. In the
case when F is a partition, it is either a leaf itself, or its two sons belong to
the tree.

On the other hand, let us assume that some point x € [0, 1] does not
belong to any leaf. Let I be the largest dyadic interval containing x and not
overlaping with JF. The “father” of this interval thus meets JF, therefore its
other son belongs to N, proving that the tree (N, A) is not complete. a

Proposition 1.1.6. Any prefix code satisfies
B{¢[e(x(")]} > H[P@x])].
Proof. Tt is enough to notice that, from the Kraft inequality,
EN — [0,1]
2V gt ()

defines a subprobability, and to follow the same reasoning as in the proof of
proposition 1.1.2. O

Theorem 1.1.1. There exists a complete prefix code ¢ such that

H[P(axy)] < B{efe(x)]} < H[P(ax))] + 1.
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Proof. The sequence of positive integers

{r(b) = [~logy(p(b))] : b€ EN p(b) > 0}

satisfies the Kraft inequality. Thus, there exists a prefix code ¢’ defined on the
support of p such that

([ (b)] = [~ log,[p®)]],  be BN, p(b) > 0.

From any prefix code ¢, a complete prefix code ¢ can be built in such a
way that ¢[c(b)] < ¢[c/(b)], for any block b € EV such that p(b) > 0, by
“erasing the non coding bits” (the ith bit of (s7) € D" is “non coding” if
3[(5'3_1, 1 — s;)] ¢ N'). This code ¢ is therefore such that

B{([c(XM)]} < 3 p(b)]- loga(p(b)) + 1] = H[P(aX )] +1.
be EN

O

Remark 1.1.1. One sees that looking for an optimal prefix code is, up to some
rounding errors, strictly equivalent to estimating the distribution of the blocks
of length N.

Proposition 1.1.7 (Huffman code). Let p be a probability distribution on
the set {1,..., M} giving a positive weight to each point. Let i and j be any
two indices satisfying

max{p(i),p(j)} < min{p(k) : k ¢ {i,_j}}.

Let ¢ be an optimal prefiz code for the probability vector [p(k)kg(ijy,p(i) +
p(j)]. The prefiz code ¢’ : {1,..., M} — {0,1}* defined by

k) = k), A¢{7 it
(i) (( (i,7)) (1.1.3)

~
<
—
.
~—
I
a
oy
;

is optimal.

Proof. Let ¢ be a code on {1,..., M} \{é,j} U{(i,7)}. Let ¢ be the code on
{1,..., M} defined by (1.1.3). Obviously

E[¢(c)] = E[t(c)] + p(i) + p(j)-

The code ¢ is thus optimal if and only if the code ¢’ is optimal within the set
€’ of prefix codes such that the codewords for ¢ and j differ only in their last
bit. In the case when p(i) + p(j) is minimal, ¢’ contains a subset of the set of
optimal prefix codes. Indeed, let ¢ be an optimal prefix code for (py)r—1



