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Preface

In 1973, the editorial board of the Dutch journal Polytechnisch Tijdschrift, edition
Procestechniek (editors H.J. Meemeling and Ir. F.J.G. Kwanten) kindly invited one
of us (S) to write a contribution on film boiling. Ultimately, this invitation resulted
in a series of 16 papers entitled “Kookverschijnselen” (Boiling Phenomena), which
appeared during 1974-1979. This series formed the basis for the present book.

During a sabbatical stay (1971-1972) at Eindhoven University of Technology,
one of us (C) presented a series of lectures on boiling nucleation and nucleate-boiling
heat transfer. Revised and extended versions of these lectures have been incorporated
into the present book.

While preparing the manuscript, we became aware of the desirability of including
a number of chapters on additional (but related) topics by invited specialists. Their
contributions increase the versatility of the book and, in some instances, present
differing but complementary opinions. Also, we have included a number of recent
developments and results that have not yet appeared in the published literature.

We confess that the preparation of a book on the physical basis of boiling
phenomena is (at this time) still a precarious enterprise. Nevertheless, we hope that
the book may be a reliable guide to both research workers and graduate students,
and may inspire them to establish a further understanding of the fundamental
phenomena and their applications to complex engineering systems.

Sjoerd van Stralen
Robert Cole
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The Evaporation Microlayer in
Pure Systems

Sjoerd van Stralen

1 INTRODUCTION

1.1 Nucleation

In Chap. 5, it was stressed that initial vapor-bubblegeneration during boiling
occurs on so-called nuclei at a superheated wall. Preferably, poorly wetted and partly
gas- or vapor-filled cavities serve as nuclei. These are activated at moderate wall
superheating.

According to the homogeneous nucleation theories for initial uniform liquid
superheating 6, (Chap. 3), only vapor clusters with a certain radius R, are in meta-
stable equilibrium with the surrounding liquid:

20T
p216,

R, (1)

Under the condition of an initially uniform system superheating (i.e., the wall super-
heating equals the liquid superheating; Chaps. 3 and 5) in heterogenous nucleation,
Eq. (1) is valid in a certain range of contact angles. The contact angle characterizes
the wetting of the surface and influences the bubble shape. The radius R, denotes the
radius of the cavity at the heating surface. In the derivation of Eq. (1), the pressure of
inert gas in the cavity is neglected.

In the more complicated case of heterogenous nucleation at nonuniform system
superheating (in which the wall superheating exceeds the liquid superheating), Eq. (1)
is still basic; 6, then denotes the wall superheating.

For homogeneous nucleation, which occurs generally at 8, ~ 100 K, the nucleus
radius R, is of the order of 1-10 nm. For heterogenous nucleation on commonly used
heating surfaces, R, (the cavity radius) is of the order of 1-10 um at a wall superheat-
ing 6, ~ 10 K. Generally, R, is small in comparison with the thickness of the thermal
boundary layer at the heating surface, the latter being of the order of 100 um. As a

447
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consequence, the initial superheating at the entire bubble wall equals
0r(0) = Og, = 0,.

1.2 Growth Rates of Vapor Bubbles

The course of the growth of a vapor bubble in nucleate boiling is complicated by
the nonuniformity of the initial temperature field surrounding the bubble. The
bubble originates in a superheated thermal boundary layer and pushes it locally
away from the heating surface. According to van Stralen, this layer is denoted as a
“relaxation microlayer” that surrounds the lower part of the bubble wall. The relaxa-
tion microlayer cools during bubble growth, as a consequence of the requirement of
latent heat of vaporization at the bubble boundary (Chaps. 9 and 21).

During the advanced (diffusion-controlled) mode of growth, the instantaneous
superheating Og(¢) at the bubble interface has already been diminished from
Oro(0) = 0, to zero. Initial bubble growth is governed by hydrodynamics: The
bubble is “blown up” due to an excess pressure, which corresponds to a superheating
Og(t) > 0. In the case Og(t) = 0,, early bubble growth is an isothermal process. Ad-
vanced (asymptotic) bubble growth, which is characterized by (o0 ) = 0, is isobaric,
and has been reduced to a heat-conduction process.

Decreasing ambient pressure extends the initial stage of growth. Consequently,
bubble growth is most complicated at subatmospheric pressure. An additional com-
plication arises from the formation of a thin liquid layer (“evaporation microlayer”
according to Mesler) beneath the hemispherical bubble (Fig. 1). During bubble
growth, this layer (which has an initial thickness of 1-10 um) evaporates, starting at
the center, where a “dry spot” occurs at the heating surface. Also, the behavior of
vapor bubbles during local boiling must be described by a suitable combination of
isothermal and isobaric modes.

2 INITIAL ISOTHERMAL BUBBLE GROWTH

2.1 The Rayleigh Equation of Motion

Rayleigh [1] derived a nonlinear differential equation of the second order for the
radius R(t) of a spherical cavity (with initial radius R, and a constant excess pressure
Ap) in an inviscid, incompressible, infinitely extended liquid that is initially at rest.
The derivation, given in Sect. 2.2.2 of Chap. 7, results in the following equation of
motion:

3 Ap

1 d, yen o 3.
oroR g R = RR+ SR =2 )

In the asymptotic case (R/Ry — o), the radius increases with time:

2Ap)1/2
E— t

R = (3/)1

ie., the radial growth rate R = const.
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Fig. 1 Water boiling at 26.72 kPa (1) and at 2.04 kPa (2, 3). (1-3) Initial mode of
hemispheric growth of adhering vapor bubble. (4) Artificial nucleus.

2.2 The Extended Rayleigh Equation

Forster and Zuber [2], Plesset and Zwick [3], and Scriven [4] extended Eq. (2)to
the case of a spherical vapor bubble in an initially uniformly superheated, viscous,
infinite liquid:

. B.e A ' R
RE+2pe= BP0 20, R _ 20 6x0) 20 R 4)
2 P1 p1R R piRy 6, p1R R

The derivation of Eq. (4) is based on the assumption of thermodynamic equilibrium
at the bubble boundary: The initial excess pressure is Ap(0) = 26/R, as 0 ro(0) = 0;
Ap(t)/Ap(0) = Og(t)/0, follows, as in the derivation of Eq. (1), from the Clapeyron
equation: Ap(t) = (p, I/T)0x(t) (cf. Chap. 7). A negative surface-tension term [expres-
sing the fact that the required excess pressure p(t) = 26/R(t) is not available for
bubble growth] and a negative viscosity term are added to the right side of Eq. (4).
Both terms can be neglected for 0x(t)/6, > R, /R, and for liquids (e.g., water) with a
relatively small kinematic viscosity. Obviously, the right side of Eq. (4) is approxi-
mately zero as ¢t — 0 because R(0) = R, and 0¢(0) = 6,, that is, K(0) = R(0) = 0,
which expresses metastable equilibrium [cf. Eq. (1)].

Generally, Eq. (4) is simplified by inserting Eq. (1), which yields the following
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equation of motion for R » Ry:

.3 P2l
RE+2R*=
*3 or T

—_
(9]
~—

Or(t)

The Rayleigh solution of Eq. (5) is in the initially isothermal case, for which O4(t) =
0, = const and R, is neglected:

2p, 160)1/2
=~ = Bt 6

Apparently, Eq. (6) can also be derived by inserting Ap(t) = Ap(0) = (p, [/T)8,, the
Clapeyron equation, into Eq. (3).

2.3 The Decrease in Superheating at the Bubble Boundary

In Eq. (86) of Chap. 7, the following expression for the instantaneous superheat-

ing of the bubble boundary was derived:
2 Rtlll

= T oNZ 7, 7

Ox(t) = 0, [1 ) Ta ] (7)

Actually, Eq. (7) is based on the concept of a constant heat flux density p, IR toward
the bubble boundary. Substitution of the (after a short initial stage) valid Rayleigh
solution (6) yields the following expression for the instantaneous superheating at the
bubble boundary:

1/2 1/2
2 a (2p2109) 72 @)

Or(t) = 6o — T *k“‘/’zl 3, T

Substitution of Ok(t) into Eq. (5) yields a complicated expression for the bubble
radius.

Numerical Example

Forwater boiling at a pressure of 7.8 k Pa, this results in 04(t) = 0, — 43.80,Y/2t1/2;
for a realistic value 6, = 30 K, 0x(z) = 30 — 240¢'/2. After t = 4 ms, the superheating
of the bubble wall has diminished to 15 K, half the original value. The decrease in the
superheating at the bubble wall is proportional to p,3? ~ p¥2; so as pressure in-
creases, Og(t) decreases rapidly. One calculates a decrease of up to half of 30 K in
t = 80 us for water boiling at atmospheric pressure. This implies the minor role of the
Rayleigh solution (6) at higher pressures; vapor-bubble growth is then nearly com-
pletely governed by heat diffusion.



