lan R.Sinclair

Introducing Z-80
Assembly Language

Programming

Ian R. Sinclair

Newnes Technical Books\

Newnes Technical Books

is an imprint of the Butterworth Group

which has principal offices in

London, Boston, Durh@, Singapore, Sydney, Toronto, Wellington

First published 1983

© Butterworth & Co. (Publishers) Ltd, 1983
Borough Green, Sevenoaks, Kent TN15 8PH, England

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and
recording, without the written permission of the copyright holder,
application for which should be addressed to the Publishers. Such written
permission must also be obtained before any part of this publication is stored
in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of Net Books
and may not be re-sold in the UK below the net price given by the
Publishers in their current price list.

British Library Cataloguing in Publication Data

Sinclair, Ian R.
Introducing Z-80 assembly language programming.
1. Assembly language (Computer program language)
2. INTEL Z80 (Computer)
I. Title
001.64'25 QA76.73.A8

ISBN 0-408-01338-9

Typeset by Tunbridge Wells Typesetting Services Ltd
Printed in England by Whitstable Litho Ltd., Whitstable, Kent

Preface

There has never been any shortage of information on any of the major
microprocessor chips, but most of the books that have been previously
available on the 6502 and the Z-80 have been rather specialised.
Specialism has taken two forms, of which one is explaining assembly
language with a view to the book being used as a reference work by
writers of interpreters and compilers. The other option is a book which is
specific to the use of one machine, such as the TRS-80 or the ZX-81.
This book is designed as an introduction to assembly language
programming of the Z-80, assuming only that the reader has some
experience of using a language such as BASIC, and enough background
knowledge of microprocessors to understand words such as ‘address’
and ‘data’. Some reference to specific hardware is needed, because a
Z-80 on its own is of no use and most writers of assembly language will be
writing for their own computer, but every care has been taken to avoid
giving details that apply to one machine in such a form that the reader
would not realise that these details applied to that one machine.

The Z-80 has now been manufactured for a considerable time (several
years; a long time in IC terms), and its use is by now very well
established. As a result, no book can possibly quote examples of wholly
original subroutines, and I would not claim any originality for any of the
examples shown here. Most of them have, however, been taken from my
own assembly language programs, written either for the TRS-80 or on
MENTA, and the few that are not of my own making and for which I
know a source have been acknowledged.

Unlike many authors of books on Z-80 assembly language
programming, I have laid very little emphasis on arithmetical routines.
These are of little interest to the beginner, and generally concern only the
writer of a compiler or interpreter — who is not likely to be reading this
book. For that reason also, I have emphasised the other aspects of Z-80
programming which are more likely to be used by the hobby user or the
user interested in machine control. I have avoided long examples as far
as possible, because it is much more useful for the newcomer to assembly
language to design his/her own program than to wade through anyone
else’s work. Once general methods are known, then practice, using this

book as a guide, is the best path to achievernent in assembly language
skills.

I am grateful to a large number of people who have contributed to this
book, particularly to Phit Chapman of Newnes Technical Books for the
initial idea and continual encouragement, and to Barry Savage of
Dataman Designs, who very kindly lent me the MENTA assembler unit
to keep in touch with Z-80 assembly language when I replaced my
TRS-80 with a BBC machine. I must also mention the tolerance of my
wife, faced with a room full of buzzing printers, and the cheerful co-
operation of countless members of the TRS-80 Users’ Group,
particularly Laurie Shields.

Ian Sinclair

Contents

1 Why and how 1
2 Z-80 Architecture 15
3 Assembly language and assemblers 27
4 Assemblers 40
5 Instructions 50
6 Program design 71
7 Programming details 81
8 Techniques 93
Appendix A Sample program listing 104
Appendix B Z-80 Mnemonics and codes 111

Index 121

1
Why and how

Any system that uses a microprocessor, from a simple controller to a
large computer, will require the microprocessor to be controlled by a
program, because the action of the microprocessor is completely
governed by a program. A microprocessor is programmed by applying
sets of electrical signals to it, and each different set of signals can be
represented by a number, so that a microprocessor program can be
written down as a series of numbers. This set of numbers is called
‘machine code’ or ‘object code’, and each number represents a set of
signals that will be applied to the microprocessor.

Computers are not generally programmed in this way by the users.
Using programs that consist of strings of numbers is not the simplest way
of programming, and machine code is referred to as a ‘low-level’
language. It is, in fact, very close to the most primitive method
imaginable, which is to control the action of the microprocessor by the
settings of switches. Users and programmers of computers need to be
able to ignore the details of what the microprocessor is doing, and
concentrate on designing programs to solve specific problems, so that
‘high-level’ languages such as COBOL, FORTRAN, ALGOL, BASIC
and Pascal have been devised. These languages use ‘keywords’, each of
which corresponds to a long program in machine code, to put together
what would be a very long and difficult program if it were written
directly in machine code. When the language is interpreted, meaning
that each keyword (such as PRINT, INPUT, GOTO) is dealt with by
the computer in turn as the program runs, this causes the program to run
much slower than if the program is compiled. Compiling means that the
entire program is turned into machine code before the program is run, so
that the conversion is done once and once only.

There are two particularly important reasons for using machine code.
One is speed. When a computer uses an interpreted high-level language,
the speed of interpretation may be such that actions like the animation of
graphics or the sorting of string arrays take place much too slowly
because of the interpretation process. For example, a loop such as:

10 FORn = 1 TO 10
20 PRINT a
30 NEXT n

will require the interpretation of the keyword PRINT to be carried out
ten times, and the address of variable a to be found ten times. On the
other hand, a compiler would collect the PRINT and variable-finder
routines, put the address of the variable into the PRINT routine, and
create a loop in machine code which would carry out the action (not the
creation of code, followed by part of the action) ten times. When no
compiler exists for a machine, which is true of many small computers
(though not of the TRS-80 or Video Genie, which can use the ACCEL
compiler) this speed-up action must be carried out by writing the
program directly in machine code. If the machine code routines of the
interpreter exist in ROM, then it may be possible to make use of them,
but the process of interpretation, finding the routine which corresponds
to the word PRINT, for example, is cut out, which means that the time-
consuming part of the process is eliminated.

The other reason for resorting to machinge code is that any high level
language is restricted by its keywords. The keywords of a language form
a type of menu from which the programmer can choose, but inevitably
this menu is restricted. There will be actions which are either impossible
or which can only be carried out in a very clumsy way using the
keywords. The most important actions of this type are inputs and
outputs — the computer is generally restricted to a few standard
methods, and when experimental interfacing methods are used, there
will very often be no keyword which corresponds to the action that is
required. It is rather unusual, to say the least, to find that computer X
can read cassettes that were recorded by computer Y, and yet the
methods of recording are essentially similar; only the machine code
routines differ.

For every part of the system that is under the control of the
mircroprocessor, however, control by machine code is possible. This
aspect of machine code has assumed less importance in recent years
because more recent designs of computers have paid more attention to
inputs and outputs, and the requirement for specialised machine code
routines is less than it once was. Nevertheless, the use of robot arms,
modems, networks and other forms of interfacing will always demand
some use of machine code to ensure correct operation.

The Z-80 system

The £-80 1s the most widely used 8-bit microprocessor. Eight-bit in this
sense means that program or data signals sent to the microprocessor use
eight volrages applied to eight corresponding pins on the body of the
microprocessor. The total number of pins on the body is kept to a
reasonable number (40) by using these eight pins, the data pins, both for

2

ROM

Address,

280 et e PORT
Control Bus

lines

RAM

Fig. 1.1. A block diagram for any Z-80 microprocessor system

inputs and for outputs. This is possible because the microprocessor deals
with actions in sequence, one by one, so that simultaneous input and
output is impossible in any case.

Figure 1.1 shows a generalised block diagram of a Z-80
microprocessor system. The blocks marked ROM and RAM are
memory. The ROM will contain at least the essential input and output
programs that enable the Z-80 to be further programmed, and the RAM
will be used to store programs or data which will be lost when the power is
switched off. For most of our purposes, we shall be concerned with RAM
into which the number codes that make up a machine-code program are
placed, but the ROM is even more important because without some
programs present in ROM it would be impossible to program the RAM.
The routines in the ROM will therefore, at the very least, provide for
input from the keyboard and output to the video screen, so that we can
enter items and also see the effect. These inputs and outputs are carried
out by passing signals through the block marked ‘Port’. The port, which
may be one single chip on the board or a number of connected chips,
provides for connections, isolation and timing. The connections will be
inputs and outputs, and these will have to be isolated from the
microprocessor itself because they can be dealt with only at certain times,
fixed by the program that controls the inputs and outputs. A port usually
provides for storing one set of signals until they can be used either by the
microprocessor or by the other systems (peripherals) that are attached to
the port.

N

All the sections of the microprocessor system are connected by lines
which are grouped as buses. The significance of a bus is that a large
number of chips are made to share one common set of interconnections.

iy X 5 ;s
The difference between independent connections and buses is illustrated
in Fig. 1.2. A bus allows signals to be sent between any two units that are
connected to the bus by using a common path, rather than by having a
separate path for each possible signal route.

—

1 2 3
(a)
i 2 3
(b)
in/out
1 2 3 4
(c)
1 2 3 4
(d)
in/out

Fig. 1.2. Independent connections and bus connections. Connecting each unit of a
system to cach other independently (a,¢) requires a large number of circuit
paths. A bus method (bh.d) is simpler and easier to use, provided that two

signals are not sent at the same time

Words such as ‘sent’ and ‘path’ tend to lead us to think of a set of
signals as something being moved from one place to another. The signals
that are used in microprocessor systems, however, are electrical
voltages, and a better description of their action would be ‘sharing’.
When a connecting line is used by any unit of a microprocessor system to
‘send’ a signal the electrical voltage of each line in the bus is set to one of
two possible levels. Any other unit connected to the same lines can sense
these voltage levels, but the voltages are not in any way removed from
the sending unit and shifted to the receiving unit, any more than playing
a record takes the groove from the disc and puts it into your ear! The
value of a bus system is that the interconnections can be permanent, but
the units are controlled so that when one unit places voltages on the lines
of the bus, all of the other units on that bus will have the same set of
voltage available — but they can be controlled so that only one (or more)
selected units can use these voltages.

The Z-80 buses

The Z-80 buses are described as the data bus, the address bus and the
control bus. The data bus consists of eight connecting lines which are
bidirectional, meaning that they can carry signals from the
microprocessor to other units or from the other units to the
microprocessor. As we noted earlier, inputs and outputs can never be
simultaneous, so that this use of the same set of connections for both
purposes is not a disadvantage; it 1s in fact a considerable advantage in
terms of the reduction of the number of connections that have to be
made.

The address bus consists of 16 lines which are used for selecting units
of memory. Every different arrangement of voltages on the address lines
corresponds to a_different portion of the memory being activated and
connected to the data lines. This allows the microprocessor to ‘write’ —
place a signal pattern on the-data lines to be copied into the selected part
of memory, or ‘read” — when the signal placed on the data lines by the
memory location is copied by the microprocessor.

The control bus consists of lines which are used to control the units
attached to the data and address buses, or to allow the microprocessor to
be controlled by external signals. Two important control bus lines of the
Z-80 are the read and the write lines, which are connected to all the
memory chips, and which send out signals from the microprocessor that
will determine whether the selected part of memory is to be written to or
read from. Writing implies that the content of the memory will be
changed; reading always leaves the memory unchanged. Another
control line is used to signal when the address bus is free to accept a

5

memory address; this signal is used to distinguish between the use of the
address bus for memory and its use for the port or ports.

Among the control inputs are the interrupts and the reset. The two
interrupt inputs allow th&action of the microprocessor to be interrupted
by signals which will then force the microprocessor to carry out a special
piece of program whose starting address will be specified in some way.
More details of this process are given in Chapter 7. The reset input, as
the name suggests, clears all the data from the microprocessor, and
forces the address bus lines to the number zero (that is, the signals on the
lines are all at zero voltage).

In general, the signals that are present at the pins of the Z-80 are of less
interest to the assembly language programmer than to the hardware
designer but, since many of the hardware actions depend on software
and vice versa, the hardware actions are dealt with in rather more detail
in Chapter 2.

Binary number system

The signals which are present on the buses use only two voltage levels,
known as logic levels 0 and 1 — the words ‘logic level’ often being
omitted. Level 0 means a low voltage, somewhere between 0 and
+0.8 V, and level 1 means a higher voltage, between 3.5 V and 5.0 V.
The wide tolerances of voltage at each level should ensure that no voltage
levels in the system are ever ambiguous; all should be either at level 0 or
at level 1. The use of two voltage levels leads naturally to the use of a
numbering system which has two digits only, 0 and 1. This numbering
system 1s the binary code.

Our conventional (denary) number system is based on digits 0 to 9,
with the next whole number being written as 10, meaning one ten and
zero units. Similarly, the number 365 means 3 hundreds (100, or 10?)
plus 6 tens (10, or 10") plus 5 units (1, or 10"). Each place in the number
shows how many units are to be counted and also the multiplier (1, 10,
100, etc.). This system of writing numbers is one of the many
contributions of the ancient Arab world to mathematics and science, and
it rapidly superseded the clumsy and arithmetically useless Roman
number system. By using the position of each digit to indicate its power
of ten, its significance or importance in the number is indicated. The ‘5’
in 365 is the least significant digit; change it to 6 or to 4 and the change is
of one part in 365, almost negligible. The ‘3" in 365 is the most
significant digit; change it to 2 or to 4 and the change is of one hundred
parts in 365 — certainly not negligible. Binary numbers can be written
in the same form.

When we count using only the digits 0 and 1, however, the next

6

Place: 7 6 5 4 3 2 1 0
Value: 128 64 32 16 8 4 2 1

Fig. 1.3. Position values, or powers of two

number following 1 has to be 10, meaning 1 two and 0 units. The place of
a digit now indicates the power of two rather than the power of ten; Fig.
1.3 shows a table of powers of two up to 27, embracing all the powers that
will be used in Z-80 programming. Any number that can be written in
denary (scale of ten) can also be written in binary (scale of two), but the
binary version will contain more digits than the denary version if the
number is greater than 1! The sequence of the first 16 numbers in a
binary count is shown in Fig. 1.4.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111 Fig. 1.4. The first sixteen numbers (0 to 15) of a binary count

Conversion of a binary number into its denary equivalent is
straightforward, using the table of powers of two shown in Fig. 1.3.
Wherever there is a 1 in the binary number, its place value (the value of
that power of two) is written down, and these numbers are then added to
give the denary number. Conventionally, the Z-80 works with sets of
eight binary digits, and this set is called a byte. One byte can range from
00000000 (zero) to 11111111 (denary 2553), so that the numbers that the
Z-80 handles can be in sets of this size range. This does not preclude the
use of whole numbers greater than 255, nor of fractions and negative
numbers, provided that they can be represented in byte form, of which
more later. The important point is that one byte is the maximum that the
Z-80 can read in or write out at one time. Figure 1.5 shows the ancient
and useful method of converting a denary number into binary form.

Using single-byte units means that special provisions have to be made
for numbers that are not positive whole numbers (integers). Since the
binary system makes no provision for anything other than the digits 0

7

Method: Divide the number by two. Write the result and the remainder, which
must be 1 or 0. Repeat with the result, until the last remainder, which is 1, is
found. Write the remainders in order, starting with the last one.

This is the binary number equiv\alent to the denary number.

Example: 124

2)124 remainders
62 0
31 0
15 1
7 1
3 1
1 1
0 1

Binary number is 1111100 (read upwards)
In eight-bit form, this is 01111100

Fig. 1.5. Converting a denary number to binary

and 1, with no + or —signs, the sign of a number, positive or negative,
has to be indicated by making use of one of the bits of a byte. The bit used
1s the most significant bit, and the meaning allocated to it is that, if this
bit is 0, the number is taken as being positive, and if this bit is 1, the
number may be taken as negative. Note may — if we decide that the most
significant bit will not be used as a sign bit in our programs, then we are
free to do so.

Signed numbers

The use of the most significant bit as a sign bit follows from the method of
creating the negative equivalent of a positive binary number. The
procedure is shown in detail in Fig. 1.6; the binary number is inverted
first, writing a 1 for each 0 and a 0 for each 1 in the number. Following
inversion, 1 is added so as to produce the negative form, known as the
‘twos complement’. This is always a number whose most significant bit

Write the binary number, single byte.

Invert each byte, writing 1 for 0 and O for 1.

Add 1 to the result. This is then the negative form of the original
number.

Example:
Byte is 01101101
Invert 10010010
Add 1 10010011 this is the negative form

Fig. 1.6. Creating the negative form of a binary number. The number must use
seven bits only, if its negative form is to take up one byte

must be 1, and this, or any other number in which the most significant
bit (msb) is used as a sign bit, is called a ‘signed binary number’. For
single-byte numbers, the range of values that a signed number can have
is —128 to + 127, as distinct from the 0 to 255 range of the same bytes
considered as unsigned numbers.

The sequence of a binary countdown from positive values through
zero to negative values looks rather odd in consequence of the use of twos
complement; a portion of such a countdown is illustrated in Fig. 1.7.

11111011 -5

11111100 —4

11111101 -3

11111110 -2

11111111 -1

00000000 0

00000001 +1

00000010 +2

00000011 +3

00000100 +4 Fig. 1.7. Part of a binary countdown with its denary
00000101 +5 equivalent

The important part is that the negative form of a binary number bears
little resemblance to the positive form; + 5 in binary is 00000101 and —5
is 1111101 1. This system has, however, the very considerable advantage
of permitting the microprocessor to use the same circuits to carry out
both addition and subtraction. Novice programmers are often perplexed
by a number such as 10011011, which if regarded as unsigned is 155
denary but which if regarded as signed is 101 denary. The curious point
is that only very seldom is it important to distinguish between the
meanings unless you are designing mathematical programs, because the
microprocessor will treat the number in the same way no matter how you
think of it. In practice, the programmer has to be aware of when the
microprocessor will treat a number as being signed and when it will treat
the number as being unsigned. Since we do not generally use binary
numbers in the course of our programming, the number of times that the
programmer is involved is negligible.

Integers and floating-point numbers

Most computers make provision for integers, meaning positive whole
numbers. These are used, for example, for line numbers (except by the
Camputers LYNX) and for address numbers, and they consist of two
bytes each. The range of numbersis 0 to (256 x 256) —1, which is 65 535;
alternatively if the numbers are thought of as signed, the range is
—32768to + 32767. A greater range can be obtained by using a larger

number of bytes.
h)

©o

Numbers which are not defined as integers are treated as floating-
point numbers, which are stored in mantissa-exponent form. This is
analogous to the ‘standard’ or ‘scientific’ notation that is used by most
calculators, in which a ntrmber is expressed in denary as a value between
0 and 10 multiplied by a integer power of ten. Numbers greater than 1
will use a zero or positive power of ten, numbers less than 1 will use a
negative power of ten. Using this scheme, we can write 261700 as
2.617 x 107, and 0.00114 as 1.14 x 10~*. If you are unfamiliar with this
method of writing denary numbers, then skip the next section — it’s not
for you!

Binary floating-point numbers are written in the form
XXXXXXXX for the modulus (eight bits following a binary point in
this example) and with a separate exponent, the size of the power of two.

1. If number is greater than 1, divide by the next higher power of 2

2. Write in exponent — mantissa form.

3. Convert mantissa to binary fraction by subtracting negative powers of
two.

Example: 24 which is greater than 1, so divide by next higher
power of 2, which is 32. This gives 24 as 0.75 X 25
Now 271 = 1/2, which is 0.5
0.75 is greater than 0.5, so write .1B, and subtract to get 0.25
2-2=1/4=0.25; in binary this is .01B, and subtracting from
the 0.25 that remained leaves zero. This ends the conversion.
The fraction 0.75 denary is .11 binary.
The complete number has a mantissa of .11000000 and exponent of 10000101

Fig. 1.8. The manussa-exponent form for a floating-point number

The scheme which is followed is that of expressing the number as a
modulus whose value lies between 10000000 and .11111111 and an
exponent whose value is 10000000 added to the actual value of the
exponent (all figures in binary). The binary fraction is obtained by the
conversion of the denary fraction to binary, which is illustrated in Fig.
1.8, having first put the number into appropriate form by dividing it by
the next higher powcr of 2. For example, the number 56.6 is put into
binary fraction form by first dividing by the next higher power of 2,
which is 64. This gives the number 56.6 as being equal to (56.6/64) x 26
(since 64 is 2°). The fraction, 56.6/64 is 0.884375 in denary fractions, so
that the mantissa of this number would be the binary equivalent of
0.884375 denary.

Looking at another example, the denary fraction 0.0246 can be
converted by dividing by 275 (which is 0.03125), so that the form of the
number is a mantissa of 0.0246/0.03125, in denary, and an exponent of
2-3,

The exponent number, 6 in the first example, would be added to 128

10

(denary) to give 134 denary, in the second case, 128—5 is 123. These
exponents in binary therefore become 10000110 for the 56.6 example,
and 01111010 for the 0.0246 example. This allows the system to
distinguish between the numbers which started greater than 1 and these
which started as less than 1.

The fractional part of the number which in denary is always between
0.5 and 1 can be expressed as a number of bytes of binary. The greater
the number of bytes that is used to express this fraction, the more precise
the arithmetic, because denary fractions seldom convert exactly to
binary fractions. Binary fractions are exact only when the denary
number that is being converted is a negative power of two (Fig. 1.9) like

Power Denary Binary

of two

-1 1/2 51

-2 1/4 .01

-3 1/8 .001

—4 1/16 .0001

-5 1/32 .00001

—6 1/64 .000001

—7 1/128 .0000001

-8 1/256 .00000001 Fig. 1.9. Table of negative powers of two

2-1 (which is 3, 0.5), 272 (3, 0.25), 273 (4, 0.125) and so on. All other
numbers convert inexactly, even when four bytes are used to express the
fraction as 1s normal in modern computers. This can lead to errors in the
course of arithmetic when numbers are converted to binary fractions and
back again. We encounter a similar situation when we work with
numbers such as § in decimal. By using four bytes to hold the fractional
part of the number, however, the accuracy should be to enough places of
decimals (in the denary equivalent) for all but the most stringent
purposes. To aveid mistakes, though, it is essential to round off numbers
to the number of decimal places that is needed.

Binary-coded decimal (BCD)

BCD, meaning binary-coded decimal (or denary), is a method of coding
denary numbers using binary codes but without converting the complete
number to binary form. BCD is used extensively when numbers have to
be displayed on seven-segment displays, because each unit of such a
display is used for one digit. Since a denary digit can range in value from
0 to 9, binary 0000 to 1001, a set of four binary digits is needed to
represent each single denary digit.

A number such as 255 is represented in BGD by the binary codes for

11

