3
FTLE Y| “oipgw, ¥ ¢

b b LN Vol

MM I - :




London Mathematical Society Lecture Note Series. 61

The Core Model

A. DODD
Junior Research Fellow at Merton College, Oxford

CAMBRIDGE UNIVERSITY PRESS
CAMBRIDGE
LONDON NEW YORK NEW ROCHELLE

MELBOURNE SYDNEY



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

C)Cambridge University Press 1982
First published in 1982

Printed in Great Britain at the University Press, Cambridge

4

Library of Congress catalogue card number: 81-17989

British Library cataloguing in publication data

Dodd, A
" The core model.-(London Mathematical Society
Lecture Note Series 61 ISSN 0076-0552.)
l.Set theory
"I Title. 11 Series
511.3 9A248

ISBN O 521 28530 5



PREFACE

This monograph is intended to give a self-contained presentatidﬁ.
of the core model, adding details to the ﬁ}ief account that Ronald ‘
Jensen and I presented in [10) and [11]. By "self—contained“.I mean
that any result not proved should be easy to find in a textbook: I
have used Jech's book ([25]) for references wherever possible. I have
included just about everything I know about K, sometimes without
proofs, and a few details about larger core models.

I am conscious, looking over the text, of many plades where the
explanations could be clearer, of important results that never quite
surface as lemmas and of clumsiness in some of the proofs. I hope .-
that proofs of everything that needs proving can be extracted from
the text by a careful reader: I shall be most grateful for comments
from anyone who finds the presentation incomprehensible (or
erroneous) . Two particular comment§ may help: firstly the exercises
range from the very easy to the unsolved. Sometimes they are
essential to later results in the text; I hope these ones are not
too difficult! Secondly there is no good reason why appendix II is
not inserted at appropriate points in the text, as, apart from one
result in descriptive set theory, it is self-contained. Were I
rewriting the text there would be more to be said about models of
ZFC and less about R; but the reader will have to extract general
proofs from those given in chapter 12.

Numbers in square brackets thus [1] refer to the bibliography.
I have added to this a set of notes on the history of the results
in the text, and used this as an excuse not to give attributionsh
of results elsewhere. But I should add the traditiional disclaimer
about mot being a historian of the subject; it will be apparent
that I have relied heavily on the notes in Jech's book. There is
one historical point on which I can offer no help: people
occasionally ask why mice are so-called. I am afraid that neither
Jensen nor I can remember why, but plausible explanations would
be welcomed.

) Many thanks are due to those who have helped by their own
explanations or by their criticism of mine. I should mention
particularly Keith Devlin, Bill Mitchell and Philip Welch; and
among the discove;prs of errors in previous editions Peter Koepke



and Lee Stanley. Robin Gandy has been a constant inspirer of
improvements from the time when as my supervisor he cast a critical
eye over the almost incomprehensible first draft of my thesis up

to a recent seminar talk on rudimentary functions which compelled
me completely to rewrite part one.

It is appropriate that T should dedicate this work to Ronald
Jensen, since so much of it is his work. How much is not
apparent from the references: one must also take into account
his patient explanations in answer to my endless auestionning. I
hope the references do make it clear that, aithouch I alone am
responsible for the exposition, the major results are our joint
work and many of the others are his alone.

I was supported while writing by Junior Research Fellowships
first at New College and then from Merton College. To have been
able to work in two such delightful communities has meant a great
deal to me and I owe more than I can express to the friendship
and generosity of the fellows of each.

Professor Iocan James first encouraged me to write this
monograph, and to him, as well as to David Tranah and the Cambridge
University Press, who gave much advice and help, and waited very
patiently for the result, I express my gratitude.

Tony Dodd.
Merton College,

Oxford.
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PRELIMINARIES

My intention in writing this book was that it should be
accessible to anyone who had a reasonable background in axiomatic
set theory up to G&del's consistency results; and, if this failed,
at least that readers should not be expected to hunt through piles
of 0ld journals in search of alleged folklore. The appearance of
Jech's book ([25]), and more recently of that of Kunen, have made it
easier to find these results and I have not hesitated to agive
references for results that lie away from the main development of
the fine structural theory. Various odd facts have, no doubt,
slipped in along the way unproved, but consultation of one of the
textbooks mentioned should help. Chapter O of Devlin [6] also
contains many of the things I feel I ought to have said here. A

few notes on particular points are necessary.

LANGUAGE

The language L is the usual first order language for set theory.
On official occasions its primitives are -,A,3,(,) with binary
relation symbols = and € and variables vy - Formulae are also treated
as objects (definition 1.16). A bounded quantifier is one of the
form (aviEVj), where (aviEVj)® abbreviates (avi)(vi€vj A d); a
formula all of whose quantifiers are bounded i% called restricted
or ZO. In induction on ZO structure, therefore, (BViEV.)¢ is more
complex than vi€v. A ¢. Generally if variables are displayed after
a formula then all, but not necessarily only, free variables are
displayed. But this is not a hard and fast rule, and the absence
of a variable list is certainly not an indicatidn-fhat we are
dealing with a sentence.

The language LN is L together with Nradditional unary

predicates, usually called A A.. If they are to be given

10 By

other names, or we are to add binary relations or constants or

anything else, or if we want to rename the € predicate then the

complete list of non-logical symbols is displayed thus: LR £t
’ ’

AXIOMS

A sequence of weak theories is introduced in part one. For

reference the axioms of 2F are the universal closures of the



following:
(1) x=y e Vz(z€x = zE€y) (extensionality)
(2) xt¢ = (3y€x) (yNx=p) (foundation)
(3) 3z(z={x,y}) (pairing)
(4) 3z(z=uUx) (union)
(S)¢ 3yVz (z€y w zZEXAD) (separation)
(6)® vx3y¢ (x,y,p) = vu3iv(vx€u) (3y€v)d(x,y,p) (replacement)
(7) 3y(y=P(x)) ~ (power set)
(8) 3y(y=uw) (infinity).

The axiom of choice is *

- (9) vx(Vz,z'(z,2'€x = z=z'vzNz'=¢) = 3yvzEx3!wwe€ynz).
(1)-(9) is called ZFC. (1)-(6),(8) is called ZF . The theory KpP
consists of axioms (1)-(4) together with (5)¢ and (6)¢ for
restricted ¢. Its models are called admissible. Admissible sets
are too narrow a collection for the fine-structural theory used
in part one - the theory R which we use is weaker than KP - but
similar considerations motivate the removal of, fq; example, full

replacement from the theory.

FUNCTIONS

The ordered pair (x,y) is {{x,y},{x}}. A relation is a
collection of ordered pairs. A relation R is a function provided
RxyARxz = y=z; then instead of Rxy we may write R(x)=y. This rather
trivial point needs attention: usually the literature of fine
structure has followed G8del in identifying the function f with
{Cf(x),x):x€dom(f)} . I have used the different notation here
because it seems to have become the more commonly used one. It is
natural, given this usage, to define the ordered n+l-tuple so that
(xl"'xn+l)=((xl"'xn)'xn+l)i thus n+l-ary functions are functions.
Parts of the theory - lemma 1.5 for example - are sensitive to the
choice of convention - although they would not be if we were to
redefine (x,y)={{x,y};{y}}.

I have tried to avoid reliance on the convention by adding
unnecessary () in places. Sometimes an inverse defined by x=
1(X)0...}x)n_l> is used, but care 1is needed*as this is ambiguous.

X represents a list and not a seguence: sO X€EX means xl...anX and
not (xl...xn>€x. Exceptions occur if there is no dangervof confusion.

id is the function id(x)=x.

ORDINALS AND CARDINALS

X denotes the cardinality of X: this is always identified with
the least ordinal in one-one correspondence with X (in all our weak
systems other than R this can be shown to exist). The order-type of




(X,<) is written otp({(X,<)); < may be omitted when it is €. Ra and
w, are used interchangeably.

If « is regular and uncountable and Cck then C is closed in
k if XcC = supXeCuU{rx}. It is unbounded if sup C=x.

Sck is staéionary provided SNC+¢ whenever C is closed and
unbounded in «. If C,C' are closed unbounded in-x then so is CNC'.

Indeed, if y<x and &<y 'CG closed unbounded in x then N C6 is

§<y
closed unbounded in k. Fodor's thecrem states that if S is
stationary in k an? f:S+« is regressive (i.>. for x€S f(x)<x) then

there is B€x and stationary S'cS such that £"S'={g}.

STRUCTURES

A structure for L is a pair (M,E). We distinguish *the structure
(M,E) from the set M by underlining: M denotes (M,E). Thare are some
exceptions (other than carelessness) to this rule, thouch. One is
discussed in chapter 4; another will be introduced in a moment. But
we have tried to adhere strictly to the rule that underlining should
not be used for any other purpose: so M and M will never be used
simply as different variables.

V denotes the universe, even if the theory is weaker than 2F;
this looks bizarre until you get used to it. When VEZFC, we call a
structure M an inner model of a theory T provided !FT and M is a
transicive class containing On. It is usually safe to ignore the
underlining convention with inner models, and in particular with
V itself (as we did at the start of the previous sentence).

Another abuse of notation is the writing of (M,A) to denote
{M,ANM). This never causes confusion. If M=(M,E, A AN) then
gIX denotes (Mnx,Enxz,AlnX,...,ANnX). In listing structures E may
be omitted if it is clear what it should ke. If t is a term then
M(;) denotes that x such that g%x=t(§). If convenient a subscript
rather than a superscript may be used.

The Mostowski collapsing lemma (a theorem of 2ZF) says that
if (X,E)#axiom (1) and E is well-founded then there is a unique
transitive set M and a unique isomorphism # such that n:(x,E)g(M,E7.
If X is a proper class it must also be specified that for all x€X
{y:yEx} is a set.

THE LEVY HIERARCHY
Zo has already been defined. Suppose Xn is defined: then Hn is

the.gollection of negations of formulae in En. Zn+1 is the set of

formulae of the form 3y¢ where ¢€H . If T 1is a set cof formulae then

-{¢ TF¢-w for some ¢ in TI'}. T is always omitted; it is taken to be
whatever set theory we are working in.
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§F¢(xl...xk) - §F¢(n(xl)...n(xk)).
X<, M (where XcM) means id|X:M[X+. M. A relation R is I (M) with
parameter p provided there is a Zm Pormula ¢ such that

R(y) « M=¢(y,p).
Em(g) denotes the set of relations which are Zm(ﬂ) in some parameter
p. Really we should use a bold-face I for this, but instead we

m:N+_. M means that for all Zm ¢ and X

specify explicitly if there is a restriction on parameters.
Note that if M,N are models of ZF +AC and n:M->z N maps OnM
el i g - 1
cofinally into OnN then ﬂ:ﬂ*t N for all m. Suppose this proved for

m

n<m and let ¢ be 3Jyy with ¥ H . Say §FW(y,w(xl)...w(xk)). So if
et ince mime N (=N

YEV g) _}=(ayev p (@) V(Y TR LLm0x)) . Since miMrn N m(VH)EVL o)

and (3y€z)w(y,x) is H (see [25] lemma 14.2(ii): it is here that we

need the full force of ZF ) so gF(ByEVB)w(y,xl...xk), i.e.

§F¢(xl.,.xk). m:M>. N for all m is abbreviated m:M+ N (e for
m

elementary) . id]X:§|X+e§ is written X< M. The usual terminology,
N <M may also be used.

A —E nn " Al formulae are absolute; that is, if ¢ is Al and
XcM, x€x then §k¢(x) - M]Xk¢(x) A; are absolute between models of T;
for example, if M is an inner model of ZF and REM is a partial order
then R is well-founded if and only if MER is well-founded. More
results of this kind are in appendix II.

Note also that if M,NFZF and j:M> N and j+id|M then there is an
ordinal «k such that j(k)#x. For otherwise for all x j(rank(x))=
=rank(x) so rank(j(x))=rank(x) and an easy induction shows that for
all uEOnM j[VZ=idIV2. The least such k is called the critical point
of j.

DESCRIPTIVE SET THEORY

The reals are identified with P(w). A formula is arithmetic if

all its quantifiers are restricted to range over w: ¢ is Ei if there

is an arithmetic formula Yy such that ¢(x) e (3a€P(w))y(a,x).
Generally, it is Zl if this holds with "Hl" in place of
n+l 1 n 11

" n. St 1 se Lk 3 _ 1 ;
arithmetic”; and it is nn+l if -¢ is Zn+l' An—znnnn. Free variables

may represent either natural numbers or reals: we may therefore

also define Zi sets of reals and Zi reals. All notation is light-
faced. Note especially that if ¢ is, say, Zi and we write §F¢ this
means that there is a real in A satisfying the appropriate condition;
in other words, ¢ is not treated as a second-order formula. Our
coverage of descriptive set theory is very skimpy and the reader

should consult Jech [25] for details.
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NOTATION

Other than the above most notation can be found in the index
of definitions. For the rest the following is a list of standard
symbols that may not be immediately recognisable as such.

(i) ~ is complement, but - is negation.

(ii) U and N are used both for the binary and for the unary
union and intersection.

(iii) | denotes functional restriction, f|X={(x,y)€f:x€X};
f"X denotes the range of f|X.

(iv) +> indicates a bijection, = an isomorphism.

(v) « and On are used interchangeably.

(vi) ¢ is the null set; ¢ is phi.

(vii) o marks the end of a proof.

(viii) P is power set.

(ix) # is a sharp, t is a dagger and 1 is a pistol.

(x) HK={X:TC(X)<K}.
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INTRODUCTION

The core model arises from the mixture of two technigues that
had once seemed incompatible: fine-structure and iterated
ultrapowers. Fine structure was designed for use in G8del's L; but
the major appli~-tion of iterated ultrapowers was to measurable
cardinals: and there are no measurable cardinals in L. First let

us examine the two sources separately.

l: FINE STRUCTURE
G8del's constructible universe L may briefly be defined as

follows:
LO=¢;
La+l=DEf(Lu);
L,= UL (X a limit).
A a<h @
Then L= U L_. By Def(X) is meant the collection of sets first-order
a€0n

definable over X: that is, all sets xcX such that for some formula
¢ of L with n+l free variables and for pl...pnGX
x={t€x:<x,€)§=¢(t,pl. -epp) e
G8del's construction is to be thoucht of as going on within
some model V of ZF: then LF2ZFC. So Consis(ZF) = Consis(ZFC).

L also has the important condensation property. Suppose kK is a

cardinal and X<L . Let n:§Z<x,3) where M is transitive. Such an M
exists by the Mostowski collapsing lemma. Then MSLA for some 1. We
could get by with conditions on kx and X much weaker than these.

Now consider any acw, a€L. For some cardinal « aeLK. Let X«’LK
with ?=No, a€X. weX, of course. Let m:M=(X,€) with M transitive. Say
M=LA' Then say E:ﬂ_l(a). ng and for all n€w 7(n)=n so n€a « n€a.
Hence a=a: thus aeLx. But it is easily seen that for infinite )
LA=X. And LA=?=NO' so T=RO: that is, )<w1.
pﬁovidan(w)SLm,' If we carry out the arqument in L we deduce that
2 °iLw éRl.
holds in L. In fact an almost identical proof shows that for all
infinite cardinals X PY(A)cL,+, so that GCH holds in L.

G8del deduced that Consis(ZF) = Consis(ZF+GCH). In fact the

condensation property can be used o deduce more powerful properties

Hence a€L . We have
Wy

N . s
By Cantor's theorem 2 °3Nl so the continuum hypothesis

such as ¢ (see [6]).



A little close attention to the condensation property reveals
many more details about the corollary that PL(w)SLwl. We have
already observed that we may replace wy by w?: and this must be the
best possible, since LEP(w) is uncountable. But that does not mean
that every a<wl must rield a new subset of w - we may have w<u<m1
and P(w)nLa=P(m)nLu+l.
much longer than 1 - see [39].

This is called a gap. Indeed there can be gaps

The existence of a gap is equivalent to some form of
,<comprehension: for it says that all subsets of w definable over LA
are already in LX' We could (and shall) define a measure of the
fajlure of comprehension cver LA as the least y such that LAnP(Y)*
+LA+IHP(Y)- Such measures are clearly related to admissible set
theory (KP).

In fact it pays to be even more precise. Maybe there are no new

subsets of w El—definable over L., but there are such 22—definable

definable subsets? "We find such)questions both interestinc and
important in their own right. Admittedly, however, the questions -
and the methods used to solve them - are somewhat remote from the
normal concerns of the set theorist. One micht refer to "micro

set theory" in contradistinction to the usual "macro set theory”.
Happily, micro set theory turns out to have non-trivial
applications in macro set theory"(Jensen [26]). We shall return to
the question of applications at the end of this section.

Jensen's paper just quoted contains a full fine-structural
analysis of L. This involves putting "coarse" rasults into forms
that involve "fine" definability distinctions. As an example
consider the result of G8del that if acy, a€LA+1\Lk then T=?. It
turns out that if aezl(LA)\Lk then there is a function £ 21-

definable over L, of a subset of y onto A. (We have to say "a subset

A
of" because if we tried to add trivial values for B€y~dom(f) we might

1

end up with a £, function.)

It turns oit to be convenient to replace the L hierarchy by a
modified form, the J hierarchy. This leaves the total model the same
but redistributes sets among the levels. One reason for Qoing this
is that the pairing axiom fails in arbitrary LA' which makes for
difficulties. As the text uses an odd definition it is worth giving
the original here.

A function is called rudimentary if and only if it is finitely
generated by the following schemata:

(a) £(x)=x;

(b) £(X)=x,~x.;

(c) £(xX)={x,,x.};

(d) £(X)=h(g(x));
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(e) f(y,%)= U g(z,X).
ZEy
Rudimentary functions were invented as part of-a programme to

generalise the notion of primitive recursive to arbitrary sets (see
[17] and [32]).

Now the J hierarchy is defined as follows:

JO=¢:
Ja+l=R(JaU{Ja});
J,= U J (A a limit).
)\G<Aa -+ <P
R(X) denotes {f(x): f rudimentary, X€X}. Then -
(i) L= v J 3
a€0n
(ii) OnnJu—wa (whereas OnﬂLa=a);
(iii) Ja+lnP(Ja)=Def(Ja)'

Ja=La if and only if wa=a. (iii) shows that R is very like Def; (ii)
shows that in general it is longer.

One of the most important technical devices of [26] is the
"master code". One way of looking at this is to say that if there is
some subset of y in Zl(J )\JA then there is a "universal" one. To
put this more precisely, let us define the projectum. The Z
projectum of A, px, is the least y such that P(wy)nz (J )éJX’
shall restrict ourselves to Zl for a bit. As we have already said
there is a Zl function of a subset of wpi onto JA.Indeed there is
such a function uniformly, called the Zl Skolem function. This is a
partial Zl function h with the property that given a fixed
enumeration (¢i:i<w) of Xl formulae with two free variables

3yd; (y,x) = b (h(i,x),x).

It may help if we sketch a proof of the assertion that h is a
surjection when restricted to wxwoi(in fact this is not auite exact
because h may need a parameter argument as well, but we shall avoid
this difficulty). Suppose aEP(wpi)n(Z*(JA)\JA). Assume for
simplicity that a has a parameter-free Zl definition over JX:

BEa = J)‘]=¢>(B).

Now let X=h"(wxup) 5,3, Let mM¥(X, €
with M transitive. Now the condensation property holds in the J

). It is easily seen that X =

hierarchy for all levels - indeed there is a H2 sentence saying, in

any transitive set, "I am a Ja" - so M=J_ for some B. w%: JB+X X

Now for yewoi m(y)=y, and Me¢ (y) & JAF¢("(Y)) - J)F¢(Y)' so a€21(JB)

If B<\ we should have a€JB+lEJA’ but a(JA, so B=A. So T: JA+Z 5

Furthermore given erA m(x)€X so m(x)=h(i,y) say, with i€w and

Y<wpi. But then x=h(i,y) so x€X; thus X=JA.
h is not total, of course. Now for our master code. Since there
is a Zl map of wpi onto Jpl it is possible to make it a subset of
A
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Jpl - we can then code it in wpi if necessary. In gefieral we only
A

know that for some parameter p h"(wX(wpiX{p})FJA: let Py be the

least such p in the well-order of JA used to prove LEAC. Then let

A={(i,x): i€w A xEJpl A Jkk¢i(x,py}. For every BEEl(JA)ﬂP(JDl)

there is a rudimentaéy function f such that x€B e« f(x)€A.

A is a Zl master code.

Having obtained this result we find that the means are more
interesting that the end. For A does not merely code subsets of

mpi: it codes the whole of JX' For example, if n:g*zl(Jol,A) then
A

there is a unique py and a unique Tom such that ?:JU»Z Jk and,
- 1

letting M=(M,B), B is a Zl master code for Ju’ M=Jpl and ?(p
Also T:J ~+. J

UZ: A n
lemma 3.26). To generalise this coding to oy it is necessary to

U)=px.
. This is proved by reconstructing Juufrom B (see

define a relativised projectum of a structure (JO,A) and to show

that o§=oél aA- Since relativised projecta will need detailed
Al

consideration in a more general context we shall say nothing more
about them here.

In [26] the applications of these principles are all
combinatorial. It is difficult to give a brief account of these
that reveals the role played by fine structure, and we shall not
try, for the applications that concern us are not combinatorial.
Essentially the point is this: many nice theorems can be proved

about El maps, sets and formulae but do not generalise to Zn:

ultraproducts are a source of such resuls, as we shall see. By

fine structural analysis,zn+l properties of J, are reduced to Zl

A
properties of Jon, which are then handled nicely and returned to

A
form by a futher bit of fine structure. For example, for every

z
n+l

El(Jx) relation R(x,y) there is a Zl function r(x) such that

JyR(x,y) = R(x,r(x)).
(Zl relations are said to be "Zl uniformisable”). This is not so

clear for Zn+l relations. We may prove it as follows, by induction

on n. n=0 is given. Suppose R is I recall that there is a Zn

n+l’
f mapping a subset of Jon onto JA' Say R(x,y) o R(f(x),f(y)): then
A
~ . n n .
REJQ§ is Zn+l(JA)' hence El(Jp?,A ) where A" is the nth master code

formed by the inductive process we have just described. Uniformise
R by ?, so that

IyR(x,y) = R(x,T(x)).
Finally f-l is a En(Jx) relation so by induction hypothesis has a
uniformising function g; in other words g is an inverse function
for f. Let r(x)=f(Tr(g(x))). r is the required I function. For

n+l
details of other combinatorial applications the reader should
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consult [26] or [6]. In section 5 of this introduction we shall see
how the covering lemma uvses fine structure.

In this book we are dealing all the time with relative
conétructibility. That is, given a set A we define a function as
"rudimentary in A" provided that it 1is generated by (a)-(e) above
and'

(£) £(X)=x 0A.

We define

JA=¢;
=RA(JAU{J b

a+1
JA— v A (A a limit)
a<a @
where RA is like R with "rudimentary in A" in place of "rudimentary".

It is also possible to define an Lﬁ hierarchy by using an operation

1 and (X,€) by (X,€,XNA). Or, indeed, for any

number of Aj.. LAy u Jﬁ is always called L[A]. The most striking
a€0n
fact about the JA hierarchy is that it does not have the condensation

property: if XA<JA and m: M (X, €,ANX) with M transitive and M=(M, €, a)
then certainly for snme B M=JA But A—AQJA does not necessarily hold.
But in the main application cited the proof that there is a Z (J )
map of a subset of Jpl onto J,
X
collapse should leave us in the same hierarchy. Of course if mo}>

DefA replacing L by L

it was essential that the transitive

>sup A this is possible so ordinary fine structure holds above

sup A; this is not much consolation. In fact we speedily see that the
El map property fails. Suppose acw but a¢L. Let A= {w +n:n€a}. Then

1 ANJ =¢ so JA =J,: hence a(JAb “lso for all 8<ml+n ANBEL as

it is finite, so . —J 41 and af3h . But a€l, (In 1),
a={n:w,+n€A}. Yet it is impossible that there should be any map
of w oﬁto JA 1 whether X ( A l) or not.

for a<w

for

Worse is to come. Suppose we had let A-{(wl,n) n€a}. Then we
should have had a€Jh | : but since ANJL =0, I (Jh ,A))=I (Jh)cL so

a¢2m(Jﬁi). Thus there may be undefinable new subeets of w 1in o 41

this means that the projectum is not a satisfactory index of
formation of new subsets. And we no longer have Ry (75 U[JA})nP(J )=

Def (JA)

We may still define a master code as before; but, for example,

the“S1 master code may no longer code all the El subsets of mplA.A‘
’
1

over JA’ For example in the first example above we may assume

R%=Nif but no subset of w could code Rl reats in the sort of coding

we have used. We said, though, that the major interest of the master

code was that it coded the whole of J What structure do these

. AT
"inadequate" master codes code?
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A fact about L that we did not state is that if A is the Zl

master code of JA then (Jpl,A) is amenable, i.e. for all erDl
A - A

anEJpl. The coding would have made no sense otherwise, for

X

important arguments in (Jol,A) would have failed. For example the
A

Zl master .code of (Jpl,A) would not be Zl definable over (Jpl,A).

A A
So we must know that for all XEJAl aneJAl . For a start it is
L CxA A A
clear from the definition of Py A that an€J§. But we cannot get

any further than that. For example, take a¢L and A=(w&+n:n€a} again.

Take some a>w, with ol w, .Let B be the I, master code of Jﬁ. Then

1 a, A LTS, 1 4
a is rudimentary in B so if (Jpl ,B) is amenable aEle=legL.
o,A
JAl . is not a convenient structure to work with; it is too
°x,a A
small. All the sets we were trying to capture in Jol were in J?
A, A
and bounded subsets of mpl ; and uol is a cardinal in JA SO we
A,A A A A A

could get by with H=(prl )JA, the collection of sets in J? whose
A,A

transitive closure in J? is of cardinality less than moi A in J?;
’

certainly (H,B) will be amenable, where B is the Xl master code of

i

A
On the other hand H is not a very tidy structure. It turns out,

though, that H is Jil , to which fine structural “echniques can be
AA
applied. At least, they are equal subject to the acceptability
constraint. For example, if H is to be included in Jil there
xl
cannot be more than woi A bounded subsets of wol in J,. We should
’

A AL A X
have no difficulties if GCH held in JX'

Here is another difficulty: to get J?l cH we need not only a
A, A
cardinality restriction (which is easy) but also we need to know
B
that JDl SJ?. This may fail. (This is exercise 2 of chapter 3. Here
AA

) ) R ‘
is a hint: suppose R1=N§, 2 °=Nl but V#L. Let (xu:a<wl) enumerate
P(w) and let A=i(wl,a,n>:n€xu}.)

Again GCH will prevent this. GCH can only be formulated if we
have the power set axiom, which in general we certainly do not, so we

formulate a weaker constraint, called acceptability:

Prndh, 495 = vaerP(v)ng}, | o}, FELT.
This implies a weak form of GCH: if P(y) is a set then ?7?T=;+:
otherwise if ucP(y) then Eiv.Acceptability plainly fails in the case
in the hint. (Actually as stated the acceptability property is not
sufficiently uniform for the coding property claimed).

"Generalised fine §tructure' is fine structure that applies to

all acceptable J?, i.e. to all J? in which the acceptability axiom



XX
holds. It is also generalised in that it applies to non well-founded
structures. The reason for this latter extension should become
apparent as we go along: in order to avoid excessive indexing we

present the theory internally as an axiomatic development of
A,
o
easy to convert back to the terminology of this introduction when

sentences that say roughly "I am an acceptable J It is always

dealing with transitive models. Since our structures may have

several added predicates, M=<M'E'A1"-AN)' it is more convenient

to write Pm than to list all the predicates by writing Py A .
JAL ...

Anyway, non transitive models of the axioms are not of the %orm
Jil"'AN so the other form would not work.

General ised fine-structure preserves the coding property of
master codes - that if Ay 1is the L, master code of N then N can be

coded in (Hol’AN)' But for N to be recovered exactly from the code
N

another condition is necessary. Recall our counterexample in which
1 =

DN—l but N—Kl;

of N. Since Ay was defined to be {(i,x):i€w A xEHOl A §F¢i(x,p)} for

some p N will only be coded by AN if every x in N qs Zl definable

it would not be reascnable to expect AN to code all

from parameters in leU{p}, that is, if N=h§%wX(mo§x{p})). Such N
N
are called p-sound. All levels of the Ju hierarchy are p-sound for

some p, but most of the structures that concern us are not.
Given an acceptable N we may form its master code even if it
is not p-sound and then decode the master code to obtain a p-sound

structure N'.Apart from the fact that there is a I, map of N' into

N there is little to be said about the relation beiween N and N'
in general. Provisionally N' will be called the core of N; later
we shall give a rather different definition of this term. Although
generalised fine structure has little to say about the relation of
a structure to its core, the theory of iterated ultrapowers will
reveal a very simple relation for the structures that we shall be
examining.

Unfortunately we encounter considerable difficulties when we
try to iterate this construction to the projectum QS. The core in
this case is defined differently. Another problem is that although
we can form cores we cannot in general extend maps n:(le,AN>*

*M' to ?:E*g with §'=<H01,A >; unless N is p-sound for sBme P

the usual construction b%eais down. This does not matter for the
structures considered in this book; it is a problem when more
general structures - with lots of measurable cardinals, for
example - are taken into account. Generalised fine structure does
provide an extension of embeddings lemma in this case but it

involves a new hierarchy of formulae, called Z;h; this would take us



