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PREFACE

SECOND EDITION

The textbook represents a first course in elec-
tronic materials and devices for undergraduate
students. With the additional topics in the text’s
CD-ROM, it can also be used in a graduate intro-
ductory course in electronic materials for electri-
cal engineers and material scientists. The second
edition is an updated and revised version of the
first edition based on reviewer comments, with
new topics such as conduction in insulators, Hall
effect in semiconductor, phonons, and thermal
properties; new problems; a number of new
worked examples; and a new chapter on the
optical properties of materials. The second edi-
tion is one of the few books on the market that
has a broad coverage of electronic materials that
today’s scientists and engineers need. I believe
that the revisions have improved the rigor with-
out sacrificing the original semiquantitative ap-
proach that both the students and instructors
liked.

ORGANIZATION AND FEATURES

In preparing the text, I tried to keep the general
treatment and various proofs at a semiquantitative
level without going into detailed physics. Many
of the problems have been set to satisfy engineer-
ing accreditation requirements. Some chapters in
the text have additional topics to allow a more de-
tailed treatment, usually including quantum me-
chanics or more mathematics. Cross referencing
has been avoided as much as possible without
causing too much repetition, which allows for
various sections to be skipped as desired by the
reader.

Some important features are

The principles are developed with the mini-
mum of mathematics and with the emphasis
on physical ideas. Quantum mechanics is part
of the course but is presented without its dif-
ficult mathematical formalism.

There are more than 130 worked examples,
most of which have a practical significance.
Students learn by way of examples, however
simple, and to that end nearly 150 problems
have been provided.

Even simple concepts have examples to aid
learning.

Most students would like to have clear dia-
grams to help them visualize the explanations
and understand concepts. The text includes
numerous illustrations (over 470) that have
been professionally prepared to reflect the
concepts and aid the explanations in the text.

The end-of-chapter questions and problems
are graded so that they start with easy con-
cepts and eventually lead to more sophisti-
cated concepts. Difficult problems are identi-
fied with an asterisk (*). Many practical
applications with diagrams have been in-
cluded. There is a regularly updated on-line
extended Solutions Manual for all instruc-
tors; simply locate the McGraw-Hill website
for this textbook.

There is a glossary, Defining Terms, at the end
of each chapter that defines some of the con-
cepts and terms used, not only within the text
but also in the problems.

The end of each chapter includes a section Ad-
ditional Topics to further develop important
concepts, to introduce interesting applications,

xiii
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or to prove a theorem. These topics are in-
tended for the keen student and can be used as
part of the text for a two-semester course.

*  The text is supported by McGraw-Hill’s text-
book website that contains resources, such as
solved problems, for both students and in-
structors.

Please feel free to write to me with your
comments. Although I may not be able to reply to
each individual comment and suggestion, I do
read all my e-mail messages and take note of sug-
gestions and comments. If you like the text and
would like to see a third edition, which takes time
to prepare, please send your comments for revi-
sions and changes to the Electrical Engineering
Editor, McGraw-Hill, 1333 Burr Ridge Parkway,
Burr Ridge, IL 60521, USA.

CD-ROM ELECTRONIC
MATERIALS AND DEVICES:
SECOND EDITION

The book has a CD-ROM that contains all the
figures as large color diagrams in a common
portable document format (PDF) that can be
printed on nearly any color printer to make over-
head projector transparencies and class-ready
notes for the students so they won’t have to draw
the diagrams during the lectures. The diagrams
have been also put into PowerPoint for directly
delivering the lecture material from a computer.
In addition, there are numerous Selected Topics
and Solved Problems to extend the present cover-
age. For example, Elementary Mechanical Prop-
erties allows instructors to include this topic in
their courses. Semiconductor Fabrication now
appears as a selected topic in the CD. I strongly
urge students to print out the CD’s lllustrated
Dictionary of Electronic Materials and Devices:
Student Edition, to look up new terms and use the
dictionary to refresh various concepts. This is
probably the best feature of the CD.
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CHAPTER

]

Elementary Materials
Science Concepts'

Understanding the basic building blocks of matter has been one of the most intriguing
endeavors of humankind. Our understanding of interatomic interactions has now
reached a point where we can quite comfortably explain the macroscopic properties of
matter, based on quantum mechanics and electrostatic interactions between electrons
and ionic nuclei in the material. There are many properties of materials that can be ex-
plained by a classical treatment of the subject. In this chapter, as well as Chapter 2, we
treat the interactions in a material from a classical perspective and introduce a number
of elementary concepts. These concepts do not invoke any quantum mechanics, which
is a subject of modern physics and is introduced in Chapter 3. Although many useful
engineering properties of materials can be treated with hardly any quantum mechanics,
it is impossible to develop the science of electronic materials and devices without
modern physics.

1.1  ATOMIC STRUCTURE

The model of the atom that we must use to understand the atom’s general behavior
involves quantum mechanics, a topic we will study in detail in Chapter 3. For the pres-
ent, we will simply accept the following facts about a simplified, but intuitively satis-
factory, atomic model called the shell model, based on the Bohr model (1913).

The mass of the atom is concentrated at the nucleus, which contains protons and
neutrons. Protons are positively charged particles, whereas neutrons are neutral parti-
cles, and both have about the same mass. Although there is a Coulombic repulsion

! This chapter may be skipped by readers who have already been exposed to an elementary course in materials
science.




CHAPTER 1 °+ ELEMENTARY MATERIALS SCIENCE CONCEPTS

L shell with
two subshells

®
. | 5 &
K 4 2
T 2p
) ®

Figure 1.1 The shell model of the carbon
atom, in which the electrons are confined to
certain shells and subshells within shells. 1522522p2 or [Hel2s?2p?

between the protons, all the protons and neutrons are held together in the nucleus by
the strong force, which is a powerful, fundamental, natural force between particles.
This force has a very short range of influence, typically less than 107> m. When the
protons and neutrons are brought together very closely, the strong force overcomes the
electrostatic repulsion between the protons and keeps the nucleus intact. The number
of protons in the nucleus is the atomic number Z of the element.

The electrons are assumed to be orbiting the nucleus at very large distances com-
pared to the size of the nucleus. There are as many orbiting electrons as there are pro-
tons in the nucleus. An important assumption in the Bohr model is that only certain or-
bits with fixed radii are stable around the nucleus. For example, the closest orbit of the
electron in the hydrogen atom can only have a radius of 0.053 nm. Since the electron
is constantly moving around an orbit with a given radius, over a long time period
(perhaps ~10-'2 seconds on the atomic time scale), the electron would appear as a
spherical negative-charge cloud around the nucleus and not as a single dot represent-
ing a finite particle. We can therefore view the electron as a charge contained within a
spherical shell of a given radius.

Due to the requirement of stable orbits, the electrons therefore do not randomly
occupy the whole region around the nucleus. Instead, they occupy various well-
defined spherical regions. They are distributed in various shells and subshells within
the shells, obeying certain occupation (or seating) rules.? The example for the carbon
atom is shown in Figure 1.1.

The shells and subshells that define the whereabouts of the electrons are labeled
using two sets of integers, n and £. These integers are called the principal and orbital
angular momentum quantum numbers, respectively. (The meanings of these names
are not critical at this point.) The integers n and £ have the valuesn = 1,2,3,...,and
¢=0,1,2,....,n—l,and ¢ < n. For each choice of 7, there are n values of £, so higher-
order shells contain more subshells. The shells corresponding to n = 1,2,3,4, ...

2| Chapter 3, in which we discuss the quantum mechanical model of the atom, we will see that these shells and
subshells are spatial regions around the nucleus where the electrons are most likely to be found.




1.1 ATOMIC STRUCTURE

Table 1.1 Maximum possible number of electrons in the shells and
subshells of an atom

Subshell
£=0 1 2 3
n Sheil s P d f
i K 2
2 L 2 6
3 M 2 6 10
4 N 2 6 10 14

are labeled by the capital letters K, L, M. N,..., and the subshells denoted by
£=20,1,23,.. . arelabeleds, p.d, f.... Thesubshell with ¢ = | inthe n = 2 shell is
thus labeled the 2 p subshell, based on the standard notation n¢.

There is a definite rule to filling up the subshells with electrons; we cannot simply
put all the electrons in one subshell. The number of electrons a given subshell can take
is fixed by nature to be* 2(2¢ + 1). For the s subshell (¢ = 0), there are two electrons,
whereas for the p subshell, there are six electrons, and so on. Table 1.1 summarizes the
most number of electrons that can be put into various subshells and shells of an atom.
Obviously, the larger the shell, the more electrons it can take, simply because it contains
more subshells.

The number of electrons in a subshell is indicated by a superscript on the subshell
symbol, so the electronic structure, or configuration, of the carbon atom (atomic num-
ber 6) shown in Figure 1.1 becomes 15*2s*2p?, The K shell has only one subshell,
which is full with two electrons. This is the structure of the inert element He. We can
therefore write the electronic configuration more simply as [He]2s?2 p2. The general
rule is put the nearest previous inert element, in this case He, in square brackets and
write the subshells thereafter.

The electrons occupying the outer subshells are the farthest away from the nucleus
and have the most important role in atomic interactions, as in chemical reactions, be-
cause these electrons are the first to interact with outer electrons on neighboring
atoms. The outermost electrons are called valence electrons and they determine the
valency of the atom. Figure 1.1 shows that carbon has four valence electrons in the
L shell.

When a subshell is full of electrons, it cannot accept any more electrons and it is
said to have acquired a stable configuration. This is the case with the inert elements
at the right-hand side of the Periodic Table, all of which have completely filled sub-
shells and are rarely involved in chemical reactions. The majority of such elements are
gases inasmuch as the atoms do not bond together easily to form a liquid or solid. They
are sometimes used to provide an inert atmosphere instead of air for certain reactive
materials.

| 2 We will actually show this in Chapter 3 using quantum mechanics.



CHAPTER 1 ¢ ELEMENTARY MATERIALS SCIENCE CONCEPTS

Example 1.1
Virial
theorem

Total average
energy

VIRIAL THEOREM In a system of charges in which the only interactions are electrostatic at-
tractions and repulsions, there is a very simple relation between the average values of the po-
tential energy PE, kinetic energy KE. and the overall energy E for the charges:

KE = — \PE [1.1]
In addition, the total energy is the sum of kinetic and potential energies, so
E = PE+KE [.2]

The virial theorem can be applied to atoms as well as molecules provided thai the only in-
teractions are electrostatic (Coulombic type). Consider the hydrogen atom in Figure 1.2. The
ionization energy of the hydrogen atom is 13.6 eV.

a. Tttakes 13.6 eV to ionize the hydrogen atom, i.e., to remove the electron to infinity. If the
condition when the electron is far removed from the hydrogen nucleus defines the zero ref-
erence of energy, then the total energy of the electron within the H atom is —13.6 eV. Cal-
culate the average PE and average KE of the electron.

b. Assume that the electron is in a stable orbit of radius r, around the positive nucleus. What
is the Coulombic PE of the electron? Hence, what is the radius r, of the electron orbit?

c.  What is the velocity of the electron?
d.  What is the frequency of rotation (oscillation) of the electron around the nucleus?

SOLUTION

a.  Using Equation 1.1 in Equation 1.2 we obtain

E = PE+KE =

P

P —

or PE =2E =2 x (—13.6eV) = —27.2¢eV
The average kinetic energy is
KE=—1PE=13.6eV

b. The Coulombic PE of interaction between two charges @, and Q, separated by a distance
r,, from elementary electrostatics, is given by

0.0> (—e)(+e) e’
PE = = = —
dme,r, dre,r, dre,r,

Figure 1.2 The planetary model of the hydrogen atom in  Stable orbit has radius r,,
which the negatively charged electron orbits the positively
charged nucleus.




