THE |
ABC'S OF FORTRAN

PROGRAMMING

Michael J. Merchant

\

THE
ABC’'S OF FORTRAN
PROGRAMMING

Michael J. Merchant

Wadsworth Publishing Company, A Division of Wadsworth, Inc., Belmont, California

Computer Science Editor: H. Michael Snell
Editorial Associate: Jenny Sill

Production Editor: Anne Kelly

Art Director: Kate Michels

Designer: Rick Chafian

Cover Designer: Albert Burkhardt

© 1979 by Wadsworth, Inc. All rights reserved. No part
of this book may be reproduced, stored in a retrieval
system, or transcribed, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the
publisher, Wadsworth Publishing Company, Belmont,
California 94002, a division of Wadsworth, Inc.

Printed in the United States of America

123456789 10—83 82 81 80 79

Library of Congress Cataloging in Publication Data

Merchant, Michael J
The ABC’s of FORTRAN programming.

Includes index.

1. FORTRAN (Computer program language)
I. Title.
QA76.73.F25M45 001.6"424 78-24198
ISBN 0-534-00634-5

Preface to
the Instructor

FORTRAN is an easy language to learn. Most students can learn to write a FORTRAN
program in a few weeks. Learning to write a good FORTRAN program, however, is
another matter. Too often the student leaves a first course in programming unprepared
to tackle a real programming problem.

The ABC’s of FORTRAN Programming has two goals. The first is to teach the basics
of the FORTRAN computer language, plainly and simply. The second is to help the stu-
dent put this knowledge to work in solving problems with a computer.

In addressing the first goal, the text concentrates on the mainstream of the FORTRAN
language. A few topics, such as P scaling factors and BLOCK DATA subprograms, have
been omitted entirely because the beginning student has almost no use for them. Other
topics, such as computed and assigned GO TO statements, are of very limited use to
a beginning student and so are included in Appendix B. The philosophy of this text is
that it is better to give the student a basic set of tools with instructions for using them
well, than to provide every conceivable tool and leave the student bewildered by such
an excessive variety.

In addressing the second goal, the book provides numerous examples of complete
programs. These are all short and easily understood, but they illustrate essential prin-
ciples in realistic applications. There are no examples concocted to illustrate a syntactic
point in a context that would never be used by a good programmer. Many of the exercises
also ask the student to write a complete program and run it on the computer. Such active
participation is the only way to really grasp the subject.

This book can be used either for a short course on FORTRAN or for a full semester’s
introduction to programming. Material that is not essential for a basic understanding of
the FORTRAN language is included in optional sections (indicated by small boxes in the
margin), which you can cover selectively, depending on the time available and the in-
terests of the students. Two optional modules on programming style and structured pro-
gramming give practical advice on how to write a program.

The text does not assume that students have any previous computer experience.
Chapter 1 introduces the concepts of an algorithm and a program, and explains how an
algorithm is represented by a flowchart. Students familiar with these topics can omit
Chapter 1 or use it as a quick review. Chapter 2 gives an overview of the FORTRAN
language. Chapter 3 explains how programs are run on a computer and describes how
to set up a FORTRAN job. Finally, Chapters 4—10 present a gradual, thorough introduction
to FORTRAN programming.

vi

PREFACE TO THE INSTRUCTOR

No knowledge of mathematics beyond basic algebra is required. FORTRAN pro-
gramming can be useful to anyone, not just to mathematicians and scientists; all the
examples in this book are nontechnical and self-explanatory.

List-directed input and output statements are used in the early chapters. Most
FORTRAN compilers (and WATFOR and WATFIV in particular) allow these forms, and
they greatly simplify the details of reading and writing data. If you prefer, however, stu-
dents can study the optional section in Chapter 2 on formatted PRINT and READ state-
ments and use these forms throughout the book.

| would like to thank Mike Snell, of Wadsworth Publishing Company, for his en-
couragement. While the responsibility for any deficiencies in this text is my own, | am
sincerely grateful to the following for their many helpful comments on the manuscript:
Henry A. Etlinger, Rochester Institute of Technology; William L. Harrison, Oregon State
University; Lansing Hatfield, Lawrence Livermore Laboratory; Charles E. Moulton, Beaver
College; Linda T. Moulton, Montgomery County Community College; Ronald G. Sykora,
E. G. & G., Inc.; and Collin J. Watson, University of Oklahoma. | also thank Janet Churchey
for her excellent typing. Finally, to my wife Nancy, for her help, and my daughters, Kristina
and Vanessa, for their patience, my special thanks.

vii

Preface to
the Student

You are about to begin an exciting experience: learning to program, to command a
general-purpose machine capable of any kind of calculation or symbolic manipulation
and of following your instructions at the rate of a million operations per second. This
machine is a computer. The trick is getting the computer to do what you want, and that
is what programming is about.

Of course, you can use a computer without being a programmer. Credit card transac-
tions, checking accounts, automated payroll systems—these are familiar computerized
activities that touch our lives daily. Directly or indirectly, most of us deal with computers
hundreds of times each year. But the fun part of dealing with computers is writing your
own programs. When you can do that, the computer becomes your tool, doing what you
want, and you will be able to use it to do things you could not possibly do alone.

A word of encouragement: Programming is not difficult. It can be learned by anyone
who has the patience to do so. | have heard the opinion that programming is only for
people with mathematical minds. Nonsense. Anyone who wants to learn and has the
patience to practice the skill can become a good programmer. Computers are useful for
solving mathematical problems; but a knowledge of mathematics is not essential for
understanding programming. Computers are also useful in business data processing,
social sciences, applied engineering, and dozens of other fields, including just having
fun. This book has examples drawn from many fields. However, the text does not assume
any special knowledge of the fields, and no mathematics beyond basic algebra is required.

A word of caution, however: Programming is not easy. This is not a subject to be
learned the night before an examination. Nor do you learn programming by passively
reading and memorizing. What you will be learning is not just a collection of facts but
a way of thinking, a way of approaching a problem, a way of inventing a program to
achieve a desired result through using the FORTRAN language. This requires practice
and active involvement. By the time you have finished Chapter 3, you will be running
programs on the computer. From then on, writing programs of increasing difficulty and
complexity and running them on the computer will be the most important things you do
to learn FORTRAN programming.

Do not expect this skill to come effortlessly. Programs rarely work on the first try.
Careful thought, analysis, and perseverance are required. You can expect some frustra-
tion, but you can also look forward to an immense pride and satisfaction when your
program works.

A word about attitude: There is a tendency for beginners to personify the computer—
jokingly, but only half so, to think of it as an antagonist who is out to thwart the program-

viii

PREFACE TO THE STUDENT

mer. Students often remark to each other, ““Do you know what that stupid computer did
to me?” What they mean is that their program did not run due to a programming error.
They rarely say, ‘I made the most amusing mistake.” Instead, they say, ‘‘That darn
computer did it again.”” Students sometimes regard programming as a contest between
themselves and the computer. Be assured that the computer is quite impersonal and
derives no satisfaction from your errors. It is neither intelligent nor malevolent and has
neither creativity nor common sense. It does exactly what your program says to do,
nothing more. You cannot casually dash off a successful program any more than you
can hastily pen a great poem.

Learning to analyze and correct errors requires logical thinking, which can be fun.
But if programming is regarded as a hit-or-miss enterprise, it is bound to be difficult and
frustrating. Some students try to get a program to run successfully by making random
changes in the program and submitting dozens of variations to the computer, hoping that
one will work. Even if this method succeeds in getting their homework done, the students
are missing the point.

The real enjoyment of programming is in knowing that your program works because
you understand it. Answers to selected exercises are provided at the end of this book,
and you will profit from comparing your solution to a problem with the answer given here
(although there is never just one solution to a programming problem). Ultimately, though,
you must be the judge of your own work. When you are applying FORTRAN to your own
problems, there will be no answer in the back of the book. The only way you can be sure
of your program is to understand thoroughly the FORTRAN language and the basic pro-
gramming principles you are using. Write your program carefully, making sure you know
the reason for each step. Then test the program with trial computer runs to ensure that
you have not made any mistakes. Your goal should be to understand the subject so well you
do not need to look in the answer section to see if your program is correct. When you can
program with that confidence, the computer will truly be your servant.

In many ways, programming is a science. It requires a precise expression of a pro-
cedure in unambiguous language, subject to strict rules. But there is also an element
of art, for programming is an intensely creative process. To start with a problem state-
ment and build a program requires imagination and intuition. Sometimes, a clever, well
thought-out program is a truly beautiful expression of intellect and understanding. The
excitement and satisfaction of inventing such a program is no less than that felt by the
artist who paints a beautiful picture or chisels a sculpture from stone.

This is what you can look forward to. You will be learning neither pure art nor pure
science. | like to think of it as a craft; like the artist's brush, the computer is a tool. The
more skilled you become in the craft of programming, the more intricate and polished
your creations will be. With these thoughts in mind, let us begin.

ix

- Contents

Preface to the Instructor vi

Preface to the Student viii

1 Algorithms, Programs, and Flowcharts 1
Computers 1
Algorithms and Programs 4

Flowcharts 5
Variables 11
Decisions 14

[Flowchart Style 23
Exercises 31

2 Introduction to FORTRAN 42
The Assignment Statement 43
The PRINT and READ Statements 45
The STOP and END Statements 47
The GO TO and IF Statements 49
] Introduction to Formatted PRINT and READ Statements
Exercises 57

3 Running a Program 59
Preparing Yqur Program 59
Preparing Your Data 64

[] Setting Up Your Job Deck 65

n Running Your Program 66

] Errors and Diagnostics 68
Exercises 69

4 Arithmetic 73
Numbers 73
Variables 76

Note: Small boxes before section titles indicate optional sections.

ii

iv

CONTENTS

Expressions 80

Real and Integer Arithmetic 84

Type Conversion with an Assignment Statement
FORTRAN-Supplied Functions 88

Exercises 89

Control Statements 92
The GO TO Statement 92
The IF Statement 93
Logical Operators 98
Exercises 105

MODULE | Programming Style 111

Writing a Program Loop 112
Writing a Decision 129

Writing a Chain of Decisions 138
Reliability 142

Exercises 142

Formatted Input and Output 150

The Formatted PRINT Statement 150
The FORMAT Statement 151

The | Field Descriptor (Output) 1563
The F Field Descriptor (Output) 154
The Quote Field Descriptor 158

The X Field Descriptor (Output) 159
Repeat Factors 160

Carriage Control Characters 161

The Formatted READ Statement 164
The | Field Descriptor (Input) 165

The F Field Descriptor (Input) 167

The X Field Descriptor (Input) 168

The Slash in the FORMAT Statement 173
The T Field Descriptor 175

Other Input and Output Statements 176
Exercises 177

The DO Statement 182
The CONTINUE Statement 185

A More General Form of the DO Statement 189

Rules for DO Loops 189
Exercises 193

87

CONTENTS

8 Arrays 197
Procedures That Use Arrays 198
Arrays in FORTRAN 199
The DIMENSION Statement 200
[] Two-Dimensional and Three-Dimensional Arrays
] Implied DO Loops in Input and Output Lists 222
Exercises 225

9 sSubprograms 231

Subprograms in a Flowchart 231
Subroutines 234

[| Rules for Subroutines 243
Function Subprograms 244

] Rules for Functions 248

Adjustable Dimensions 249

[| Common Storage 256
Exercises 258

MODULE Il structured Programming 267
Exercises 276

10 Character Data 278
The A Field Descriptor 278
Character Constants 282
Assignment and Comparison 283

[] Character Data Type 288
Exercises 297

Appendix A FORTRAN-Supplied Functions 299

Appendix B Additional FORTRAN Features 303
Appendix C Suggested Projects 314

Appendix D Answers to Selected Exercises 327

Index 354

219

Algorithms, Programs,
and Flowcharts

You will learn in this book to program a computer in the FORTRAN language. This
chapter explains what a program is and how it is represented by a diagram called a
flowchart.

Computers

If you have access to a computer system, have someone explain its parts and show you
how to run programs on it. The computer may seem complicated, but you can program it
without knowing a great deal about its inner workings, just as you can operate a television
set without knowing how it is built.

In some ways, a computer is like a hand calculator. The program instructions are like
the keys you press on a calculator: They tell the machine what to do. Unlike a hand cal-
culator, however, a computer can process nonnumeric data, such as symbols and alpha-
betic characters, as well as numbers. For example, in compiling a telephone directory,
a properly programmed computer sorts all the names and prints them in alphabetical order.
We can define a computer as a machine that can process data by following a list of program
instructions.

What kind of instructions can you give in a program? It would be convenient just to say,
“Computer, solve the following problem!” and watch the machine obey. Unfortunately,
computers can obey only very simple commands. Every computer has an instruction set,
consisting typically of one or two hundred commands calling for operations it can perform

ONE ¢ ALGORITHMS, PROGRAMS, AND FLOWCHARTS

electronically. All these commands fall into one of seven categories: computation, input,
output, storing in memory, recalling from memory, comparison, and program control.

COMPUTATION. A computer can do arithmetic. You can write a program instruction telling
the machine to multiply, for example. As with a calculator, the actual multiplication is done
electronically. A typical large computer can multiply two numbers in one millionth of a
second.

INPUT AND OUTPUT. You can also instruct a computer to read in data. Data to be read by a
program is called input data, or simply input. To tell the machine to read, you use an input
instruction in your program.

On a hand calculator, you enter numbers by pressing the keys. On a computer system,
you might use punch cards instead. You first type the data on a keypunch machine, which
has a typewriterlike keyboard. The keypunch is not part of the computer itself, but the punch
cards it produces are put in the computer’s card reader. An inputinstruction in your program
tells the card reader to read a punch card.

When you want your program to write out results, you use an output instruction. For
instance, you can instruct the machine to print results on a line printer. Data written by a
program is called output.

You will probably use only the card reader and line printer at first, but several other
devices are used for input and output. Each type has some advantages that make it suitable
for certain applications. A computer terminal has a keyboard that you can use to enter data
directly without using punch cards. Some terminals have a cathode ray tube (CRT) display
similar to a television screen. Instead of printing results on paper, you can have your
program write on the CRT screen. Magnetic tape is used for both input and output. Large
volumes of data can be recorded very compactly on magnetic tape. Although the data on
tape cannot be read directly by a person, it can be read by a computer program for further
processing. For example, a commercial bank might run a program each day to record
the day’s transactions on a magnetic tape. At the end of the month, another program could
read the tapes and print statements for the customers. Other common media are magnetic
disk, paper tape, and microfilm.

STORING AND RECALLING FROM MEMORY. You can also instruct a computer to store or
recall data from its memory. The computer memory is nothing like a human memory; it is
just a device for storing data electronically. Many hand calculators have a memory key
that lets you save a number. For instance, in a constant percentage problem, you might
store a percent figure in memory. Each time you need to use the figure, you can recall it
from memory rather than reentering it on the keyboard. This is exactly how a computer
memory works. The difference is that instead of a single number, the computer memory
can store thousands of numbers.

Each memory location has a unique address, which is a number used to distinguish it
from other memory locations. Think of computer memory as a sequence of mailboxes with
a different address on each one. Each mailbox can contain one item of data. A program
instruction might say, ‘‘Store the number 5.2 in address 1001."” Later in the same program,
an instruction might say, ‘‘Recall the contents of address 1001.”

9.2 6.7 8.1 9.0
1 111]| 1

Punch card input is prepared on a keypunch
A computer terminal has a keyboard for input and read on a card reader.
and a display screen for output.

o
o

STOCK ON HAND:

o 32 CRATES ORANGES o
56 CRATES APPLES

o 175 BUNCHES BANANAS o
12 DOZEN AVOCADOS

o o

Printed output is produced on a line printer.

Magnetic tape is used for both input and output.

Figure 1.1 Some devices used for input and output.

ei=Yelnlals

Figure 1.2 You can think of computer memory as a sequence of mailboxes, each
with its own address. The instruction ''Store 5.2 at address 1001"’ stores the data 5.2
as the contents of mailbox number 1001.

3

ONE ¢ ALGORITHMS, PROGRAMS, AND FLOWCHARTS

COMPARISON. Another type of instruction is a comparison. This instruction tells the com-
puter to determine whether two numbers stored in memory are the same, or whether one
number is greater or less than the other.

PROGRAM CONTROL. The lasttype of instruction is used for program control, which means
telling the computer what to do next. This is like an instruction on a tax form that says, “If
losses are shown on both lines 12 and 13, go to Part IV.” You can use a program control
instruction, for example, to tell the machine to repeat a procedure over and over again.

Program control instructions are often combined with comparison instructions. For
example, some computers may have a single instruction meaning ““Go to Step 1 if the
number in address 1010 is greater than zero.”” Together, comparison and control instruc-
tions give a computer the capability to make elementary decisions.

A few more specialized types of instructions exist, such as determining when a card
reader is empty. Basically, however, the operations summarized in Table 1.1 are all a
computer can do. Writing a program means using these seven kinds of instructions to tell
the computer how to solve your problem.

Table 1.1 Types of Program Instructions*

Instruction Function Example
Type
Computation Add, subtract, multiply, etc. ““Add 1 and 2.”
Input Transfer data from “‘Read a punch card.”

some device into memory

Output Transfer data from “Print the contents of
memory to some device memory address 2000."
Storing in Save data for later use ""Store the number 5.2
Memory in address 1001.”"
Recalling from Retrieve stored data ‘‘Recall the contents of
Memory address 1001."
Comparison Determine whether one “Is the number in
number is less than, address 1001 greater
greater than, or equal to another than zero?
Program Specify which instruction “Go to Step 1.”
Control™* to do next

* Every computer has an instruction set, consisting typically of one or two hundred basic instruc-
tions. These are the building blocks of which all programs are composed. There are seven general
types of instructions.

“* Program control instructions are often combined with comparison instructions.

Algorithms and Programs

Before you can write a program to solve a problem, you must devise a method of solution
expressed as a step-by-step procedure. Such a procedure is called an algorithm.” For

* The word algorithm comes from the name of a Persian textbook author, al-Khowarizmi (c. 825).

ONE -+ ALGORITHMS, PROGRAMS, AND FLOWCHARTS

example, to determine whether an integer number is even or odd, you can use the following
method.

Algorithm A
1. Divide the number by 2, obtaining a quotient and a remainder.
2. If the remainder is O, then the number is even.

3. If the remainder is not 0, then the number is odd.
A different algorithm for the same purpose is the following.

Algorithm B
1. Look at the last digit of the number.

If the digitis 0, 2, 4, 6, or 8, then the number is even.
3. Ifthedigitis 1, 3,5, 7, or 9, then the number is odd.

Having decided on the method to be used, you need to express the procedure in a computer
language such as FORTRAN. A program is an algorithm written in a computer language.

In Chapter 2 we begin our study of the FORTRAN language itself, and in Chapter 3 you
will learn how to run a program on a computer. In this chapter we are concerned with how
to write an algorithm.

People are usually imprecise in giving instructions to each other. A simple instruction
such as ““Go to the store for a loaf of bread’’ requires hundreds of decisions to carry out:
Should you go out the front door or the back door? Should you turn left or right? Where is
the store? Where is the bread? Should you buy a large loaf, or small? Whole wheat, sour-
dough, or caraway rye? When you write an algorithm for a computer, you must include
every such detail.

Suppose you want to solve a math problem using a calculator. You do not have a
calculator, but you have a friend who does, so you call her on the phone to ask for help. She
is not at home, but her young brother, who knows very little math, offers to work the cal-
culator if you will tell him exactly what to do. Now you must specify how to solve your
problem using instructions that are so precise and unambiguous that he cannot possibly
misinterpret them. You might say, ““Enter the number 56.2, press the plus key, enter the
number 475.3, press the plus key, enter the number 11.63, press the equals key, and tell me
the answer.” This is an algorithm, expressed in English.

You can imagine how hard it would be to tell someone on the phone how to do a really
complicated computation. It is hard in English (or any natural language) to convey complex
algorithms that involve many decisions. A useful way of expressing such algorithms is to
draw a flowchart.

Flowcharts

A flowchart is an easy-to-read diagram of an algorithm. You will probably find it useful to
make a flowchart as a first step in writing a program. When the flowchart is done, it will
serve as a guide for writing FORTRAN statements.

Each instruction in a flowchart is enclosed in a box, and you use different shapes for
different types of instructions. A parallelogram means an input or output operation

ONE ¢ ALGORITHMS, PROGRAMS, AND FLOWCHARTS

(Figure 1.3), and a rectangle means a computation (Figure 1.4). To indicate the order in
which the instructions are performed, you connect the boxes with arrows. For example,
Figure 1.5 shows a flowchart for a procedure to compute and print the value of 2 + 2. The
‘‘Start’’ oval shows where the procedure begins, and the “‘Stop’” oval shows where it ends.

Read a
card

Figure 1.3 A parallelogram represents an input or output instruction.

Compute
2+ 2

Figure 1.4 A rectangular box represents computation.

Start

:

Compute
2+ 2

Print
the
result

Y

Stop

Figure 1.5 Arrows connect the boxes to show the order in which to carry out the
instructions.

ONE ¢ ALGORITHMS, PROGRAMS, AND FLOWCHARTS

EXAMPLE 1. A friend has offered to bake cookies for your birthday if you will explain how
to make them. Draw a flowchart to describe the cookie-making process. Figure 1.6 shows a
flowchart for this procedure. Of course, this is not a computer algorithm, but it illustrates
the use of flowcharts in representing processes.

Since the recipe in this example consists of a sequence of instructions that are per-
formed in order, you might just as well have written the instruction in a list, as in a cook book.

Start
1
y y
Stir
Turn on oven well
to moderate
y
y
Form into
Put 1 egg balls
in bowl
/ y
Add } cup Arrange on
butter cookie sheet
y
Add 1 cup
brown Bake for 20
sugar minutes or
until done
4
Add 1 cup
flour Stop
\

Figure 1.6 Recipe flowchart.

