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Preface

Ordinary differential equations which are variational, i.e., come from Lagrangians as
their Euler-Lagrange equations, represent a class of ODE interesting both for mathemati-
cians and physicists. From the physical point of view these equations are equations of
motion of important mechanical systems. Mathematics deals with such equations within
the range of the calculus of variations. On the one hand, there are various geometric
structures connected with these equations and their solutions, studied by means of dif-
ferential geometry and global variational analysis. On the other hand, these equations
represent an interesting object for the mathematical and global analysis, namely for the
theory of ordinary differential equations, since for certain classical families of variational
equations there have been invented powerful integration methods based on the theory of
canonical transformations, symmetries, Hamilton-Jacobi theory, etc.

There exist many excellent textbooks and monographs the subject of which are in fact
variational ODE. A large number of them, however, deal only with very particular classes
of variational equations. First of all, many restrict to the so called regular autonomous
first-order Lagrangians, i.e., to Lagrangians depending on “positions and velocities”,
L(g?,q?), satisfying the classical regularity condition

d*L
det( ) #0
ag7aq"

this concerns, in particular, all the texts using methods of symplectic geometry (cf., e.g.,
R. Abraham and J. E. Marsden [ 1], C. Godbillon [1], P. Libermann and Ch.-M. Marle [1],
J.-M. Souriau [1], S. Sternberg [ 1], A. Weinstein [1]), and works on Finsler geometry (M.
Matsumoto [1], etc.). From the textbooks dealing also with some of the singular first-
order Lagrangians in more detail, let us mention e.g. M. de Leén and P. R. Rodrigues
[3], E. C. G. Sudarshan and N. Mukunda [1], and K. Sundermeyer [1]. Other books
are usually general in the variational foundations of the theory but do not cover some
interesting aspects, such as e.g. Hamilton equations and different integration methods
for singular Lagrangians, or geometric structures connected with variational equations
and their solutions (cf. C. Carathéodory [1], Th. De Donder [1], M. Giaquinta and S.
Hildebrandt [1], P. A. Griffiths [1], R. Hermann [1], M. de Ledn and P. R. Rodrigues [1],
E. T. Whittaker [1], and others).

Generalizations of various structures and methods of classical mechanics to a wider
class of Lagrangians are subject of an intensive research, and there exists a plenty of papers
dealing with particular aspects of this problem. Much effort has been done to generalize
the concept of regularity, and consequently of the Legendre transformation, Hamilton
equations, Hamilton-Jacobi equation, etc., to higher-order Lagrangians on different geo-
metric structures (tangent spaces, fibered manifolds R x M over R and Y over R, general
fibered manifolds). Similarly, some of the questions of the Dirac’s theory of constrained
systems have been studied in higher-order situations. This seems to be important not only
for the classical mechanics itself, but namely for the quantum mechanics, where many
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questions on quantization of Lagrangians which are not regular, or are of higher order,
still remain open. Other directions of research have been oriented to study of second-
order ODE which are explicitly solved with respect to the second derivatives (geometric
structures, symmetries, existence of a Lagrangian, etc.). Bibliography included in this
work can cover only a small part of existing papers on the above mentioned subjects; in
fact, it is not possible to mention and discuss all contributions.

The aim of this work is to provide a general, comprehensive and self-contained geo-
metric theory of ordinary differential equations (of any finite order) which are variational.
We consider variational equations on fibered manifolds over one-dimensional bases. This
underlying structure is very appropriate, since it is sufficiently general to cover all interest-
ing physical applications, and to carry the possibility of straightforward or even obvious
generalizations of many tools and constructions to partial differential equations (“field
theory”). We put no a priori restrictions on the equations under consideration, i.e., we put
no a priori restrictions on Lagrangians. This means that the presented theory is universal,
and applies to equations explicitly solved with respect to the highest derivatives as well
as to ODE which cannot be expressed in this form; from the viewpoint of Lagrangians,
it covers “regular”, as well as all kinds of “degenerate™ Lagrangians of all finite orders,
“autonomous” as well as “time-dependent” Lagrangians, variational problems such that
a global Lagrangian exists, as well as (global) variational problems which do not posses
this property (i.e., such that there exists only a family of local Lagrangians giving rise to
a global Euler-Lagrange form), etc. We show that these equations can be represented by
distributions (of not necessarily constant rank); we study symmetries and first integrals
of these equations, their structure of solutions, introduce various integration methods for
these equations, and clarify geometric structures connected with them. In this way we
obtain a theory which includes Lagrangian and Hamiltonian dynamics, symmetries and
first integrals, Hamilton-Jacobi theory, canonical transformations, Liouville integration
theory, fields of extremals, and other aspects of the classical mechanics, generalized to
any Lagrangian of any order. The general point of view leads to a new look at “standard”
concepts (such as Lagrangean system, phase space, regularity, Hamiltonian, momenta,
Legendre transformation, singular system, and many others) relating them with the class
of equivalent Lagrangians (not with a particular Lagrangian). Consequently, this ap-
proach provides geometrically natural generalizations, which are “better adapted” to the
geometry of variational systems and to the study of their dynamics.

The work is based mainly on our papers [1-12], and it is an enlarged version of [7].

I thank all my colleagues, and especially, my husband Prof. Demeter Krupka, for en-
couragement and support. Also, it is a pleasure to thank the students who, by their discus-
sion, helped me to improve much of the material presented in the book. Many thanks to Dr.
Michal Marvan and Ms. Petra Auerova for helping me to prepare the camera-ready version
of the manuscript. I am grateful to the Czech Ministry of Education and the Czech Grant
Agency for support (grants No. VS 96003 (“Global Analysis™), No. 201/93/2245, and No.
201/96/0845). Last but not least it is a pleasure to thank an anonymous referee for valuable
suggestions for improvement of the manuscript, and Ms. Thanh-Ha Le Thi (Springer-
Verlag) for collaboration during the preparation of the manuscript for publication.

Olga Krupkova
Opava, September 1997
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Chapter 1.

INTRODUCTION

Problems to find an optimal solution have been already considered by the antique
science. One of the best-known ones is the classical isoperimetric problem, i.c., the
problem fo find in the plane a closed curve whose interior domain has maximal area
among all interiors of closed curves of the same length. Its formulation and solution were
well known to Aristotle, Archimedes and others. Great interest in extremal problems
motivated by mathematics, mechanics and philosophy has lead in the 17th, 18th and 19th
centuries to rush developments of methods handling with variational functionals and
their extremals. A new discipline—the classical calculus of variations came into being,
having grown from the work of Isaac Newton, Leonhard Euler, Jacob Bernoulli, Johann
Bernoulli, Jean le Rond D’ Alembert, Joseph Louis Lagrange, Adrien Marie Legendre,
Johann Friedrich Carl Gauss, William Rowan Hamilton, Carl Gustav Jacob Jacobi, Joseph
Liouville, Amalie Emmy Noether, to mention at least some of the great founders of the
theory.

Euler-Lagrange equations. The classical calculus of variations concerned in study
of the so called variational integrals. For a first insight into the problem, consider the
integral

b
1=f L(x, y(x), y'(x))dx, (1.1)

where the boudary points a, b are fixed, and the integrand L depends on x, a function
y(x) and its first derivative y’(x). The function L is referred to as the Lagrange function .
The problem is to select the function y(x) such that the above integral is extremized. We
shall recall a solution of this problem due to Lagrange (cf. e.g. B. Tabarrok and F. P. J.
Rimrott [1]). Suppose that the required extremizing function is yo(x). Denote

Iy = /h L(x, yo(x), yo(x)) dx.
a
For an admissible function y(x) we have
I =1+ Al
We may consider admissible functions of the form

v(e, x) = yo(x) + eu(x)
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and
y'(&, x) = yy + eu'(x),

where ¢ is a small parameter which does not depend upon x, and the function u(x) is an
arbitrary function independent of ¢ vanishing at x = @ and x = b. The integrand in (1.1)
can then be regarded as the function L when two of its independent variables, yy and yj.
are changed by amounts cu and eu’, respectively. For a given x we may expand L by a
Taylor series about yj and y/,. Thus we write

, " , L aL ,
L(x,yo+¢eu,yy+eu)=L(x,y0,y) +—|  eu+_—|  eu
()_\' (\'().\'U) ()_\" (_\'()‘\‘“)
1 9°L , 1 d°L L, 0L o,
—— (eu)™ + ——— w) + —— eTuu + ...
20 dy= oy 219y oy Ay L.y
Now,
bodL JOL
Al =¢ (u‘— u'— )d.x‘
a v 0y loop Ay lvo.vp)
Call PR L 9%L 20%L
+ — (u'ﬁ + 2uu’ —— + u ,’ )(I.Y+....
2 J, Y= ivo.xg) Ayady’ livo.vg) Ay~ lvo.xg)

or
2

e2
AI=€1|+712+...‘

where 1, is called the first variation, and (¢2/2) I, the second variation of the variational
integral (1.1). Evidently, sufficient conditions for / to be maximum are

11 =0, 13 < 0.
For I, to be minimum we have as sufficient conditions
I, =0 I,>0.

Since at extremum condition we have dL/dy|,, /) = dL/dy, from now on we need not
()
retain the subscript (v, _v(/)). Consider now the integral

7 ’( aL ,HL)I_
| _(u ”F +u v dx.

Integrating by parts we get

oL d oL AL \v=h
[| = ll(.————" )(/.\'+('7IH> . (12)
a ()_\' dx ().\‘/ ()'\' v=d
The formula (1.2) is called the first variation formula . Now, since u(x) is equal to zero
at x = a and x = b, the second term in (1.2) vanishes. Further, recognizing that «(x) is
an arbitrary function we conclude that for /; to vanish identically we must have
oL d oL

— ———=0. 1.3)
ay  dx 9y ;

Equation (1.3) is called the Euler-Lagrange equation. This equation was originally derived
also by Euler via a different scheme of reasoning.
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Many variational problems involve functionals whose integrands contain also higher-
order derivatives of y(x). For L(x, y, ¥, y?&, ..., y1), the corresponding equation for
extremals, also called the Euler-Lagrange equation, takes the form

oL  d AL  d* IL d~ L

dy dxdy  dx?ay® =l dx" gy

Higher order Lagrangians were first systematically studied by M. V. Ostrogradskii in the
first half of the 19th century.

In case that L depends on one independent variable x and m dependent variables y“,
1 < 0 < m,the Euler-Lagrange equations represent a system of m second order ordinary
differential equations for extremals y(x) = (y?(x)) of the form

oL d oL
ay’  dx dy?’

The functions on the left-hand sides are called the Euler-Lagrange expressions of the
Lagrange function L, and are denoted by E, (L).

=0. (1.4)

Brachystochrone. One of the best known classical problems in the calculus of varia-
tions is the brachystochrone problem. In fact, it was this problem which became a strong
impulse for intensive theoretic studies of extremal problems.

In 1696 there appeared a treatise by Johann Bernoulli, “Problema novum, ad cujus so-
lutionen mathematici invitantur” (A new problem to the solutin of which mathematicians
are invited””) where the problem of quickest descent was posed:

Let two points A, B be given in the vertical plane. Find a line connecting them, on
which a movable point M descends from A to B under the influence of gravitation in the
quickest possible way.

A solution has been given by Johann Bernoulli, independent solutions have been found
also by Jacob Bernoulli, Leibnitz, and an anonymous author (probably Newton).

We shall recall here the original solution provided by Johann Bernoulli, based on an
analogy with the propagation of light in an optically heterogeneous medium.

In the vertical plane consider coordinates (x, y) at the point A, such that the x-axis is
horizontal and the y-axis is vertical, down-oriented. Denote A = (0, 0), B = (b, b2).
Assume that the point M moves without friction, and the initial velocity is zero. This
means we have the boundary conditions y(0) = 0, y(b;) = b and v(0) = 0. The energy
equation reads

%mv2 — mgy = const,
where g is the gravity acceleration. At the initial point it holds y = 0 and v = 0, i.e., the
above constant equals zero. Consequently, the velocity at a point (x, y(x)) depends only
on the coordinate y(x) and equals /2gy(x). Since one needs to find the shortest time to
get from A to B, one has to minimize the integral

T—/ﬁ—f—iL~ (1.5)
n v V2gy(x) '

over the arc AB, where ds is an element of the path.
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The above problem is completely equivalent to the problem of finding the trajectory of
the light in a two-dimensional non-homogeneous medium where the velocity at a point
(x, y) equals to 4/2gy. The medium can be divided into parallel slices, within each of

which the velocity can be considered a constantequal v;,i = 1,2, .... By the Snell Law
one gets
sin « sin o
v w7
ie.,
sin ¢
= const,
Vi

where «; are angles of incidence of the light rays. In the limit

sina(x)

== const,
v(x)

where v(x) = +/2gy(x), and «(x) is the angle between the tangent to the curve y(-) at the
point (x, y(x)) and the axis Oy, i.e., sina(x) = (1 + (y'(x))?)~'/2. Hence, the equation
of the extremal curve, called the brachystochrone, is

VI+(2/y=C

which is equivalent to

C e
V= £ (1.6)
y
1.e., to
VY dy =dx.
C-y

Integrating this equation with help of the substitution y = C sin?£/2, hence dx =
(C sin®1/2) dt we get the following equation of the cycloide

x=C, +%C(t —sint), y= %C(l — cost).

The above equations represent a family of cycloids. A unique solution of the brachys-
tochrone problem is obtained if the boundary conditions are considered.

The brachystochrone problem can also be solved with help of the variational techniques
(see e.g. M. Giaquinta and S. Hildebrand [1]). It is the problem of minimizing the action
functional (1.5). We have ds = /dx? + dy* = V1 + y?dx, hence the Larange function

is
/1+y/2
V2gy

From the Euler-Lagrange equations of L we obtain a first integral

y(1+y% =C,

which is equivalent to the equation (1.6).
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The inverse problem of the calculus of variations. Due to intensive studies of dif-
ferent extremal problems during the 17th—19th centuries it turned out that variational
equations, i.e., equations which can be expressed in form of the Euler-Lagrange equa-
tions of a Lagrange function have a fundamental meaning in theoretical physics and
engineering. Consequently, an essential problem appeared:

A system of differential equations being given, one needs to find out whether they are
variational or not, and in the affirmative case to construct a Lagrange function for these
equations.

This problem, referred to as the inverse problem of the calculus of variations was first
posed by H. von Helmholtz in 1887. In his paper [1] Helmholtz studied a system of m
second order differential equations of the form

Bu(t,9",4")G" + As(t, 9", ¢") =0, (L.7)

where 1 < o, v, p < m. He found necessary conditions for the existence of a Lagrange
function L such that

aq®  dtdaq°
These conditions, referred to as Helmholtz conditions, are of the form
By = By, ot 2o
agr agY
A, N A, _ 233,,., (L)
agY  0q° dt

3g"  dq° 24t

dA, 0A, 1d /30A, A,
(aqv 347)

where 1 < o, v < m, and the operator (_1/a’t is defined by

d o 0
a "o Tagr
Helmholtz’s result was completed in 1896 by Mayer who showed that the Helmholtz
conditions (1.8) are also sufficient for (1.7) be variational (A. Mayer [1]).
In 1913 Volterra discovered that if the Helmholtz conditions are satistied then the
left-hand sides of (1.7) are Euler-Lagrange expressions of the Lagrange function

I
L=q”/ Es(t,uq”, ug’, ug”)du. (1.9)
0

Formula (1.9) was subsequently generalized by M. M. Vainberg [1] and E. Tonti [1].
Notice that the function L is of order two. It is called Vainberg-Tonti Lagrangian related
to the variational expressions E,,.

One can find the necessary and sufficient conditions of variationality very easily using
methods of differential geometry. Let us recall here a proof due to O. Stépankovi [1],
and L. Klapka [2].

For a system of equations (1.7) put

E, = Ay + Bsug',
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and define a differential two-form E by
E = E,dq” A dt.
Let us study a question under what conditions there exists a two-form F,
F = F,,(dq° — 4°dt) A (dq" — ¢"dt) + Guu(dq® — ¢°dt) A (dg" —§*dt) (1.10)

such that the form

a=E+F
is closed. We may suppose that the functions F,, are antisymmetric in o, v, i.e., that
F,, = —F,,. Denote by d/dt the total derivative operator,
d d d il Bl
S e P G o P )
ar o TV T e T g0
Computing the condition do = 0 we get
1/0E, OE, dF,,
T
2\dq" 0q° dt
3E,, dGap
; _2F¢1v— =0, (11])
g dt
IE,
- T Gnu = Gnu — Gun~
ag"
and since the identities (1.11) imply that
F;, 0G5y
— =0, — =0, (1.12)
agr agr

the remaining identities following from da = 0 reduce to
0Fsy . 0F, . OF,
+ 20 P

=0,
aqp aqu 8610'

oF,, 1,0G, G,
' +_( o P);o, (1.13)
agr 2\ aq° agqY
3Gyy  0Ggp
agP dg"
Now we have from (1.11)
1/0E, OE, 1/0E, OE,
UlI:_< = = )! a\)-_—'—( o = ) (114)
2\ag”  0q° 4\ 09qg" ag”
and
0E, OE,
3" 9§ -
0E, . doE, d (BE(, " 8El,) _0 {15
agv  dg°  dr\agv  ago) el

ag’  0q° 2dt
It is easy to see that relations (1.13) do not represent independent conditions on the
functions F;,, G,,. Indeed, the third relation of (1.13) is obtained by differentiating the

0E, O0E, 1d (35,, 8E‘,>
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second relation of (1.11) by ¢”, the second relation of (1.13) is obtained by differentiating
the first relation of (1.11) by ¢”. Finally, we show that the first relation of (1.13) is
satisfied identically. Differentiating the last relation of (1.15) by g7, rotating the indices
and summing up the resulting three identities we get

9%E, B 3*E, 3’E, B 32E, 3 0’E, B o’E, _
agragy  dqraq°  9q¥aq°  dqvogP  9q°9qP  0q70qY
Applying (1.14) the first relation of (1.13) follows.
Summarizing the results, we have proved the following assertion:

If the E, satisfy the conditions (1.15) then there exits a unique form F (1.10) such that
the two-form a = E + F is closed. « is then expressed by

a = E,dq° Adt

1/0E, 9E, _
— — dq® — ¢°dt dq’ — ¢"dt
4(aqv aq")( q° —q"dt) A (dq” —q'd1) (1.16)
0E, 5 .

+ aq.u(dq" —q¢%dr) A (dg" — g'dt).

Conversely, if there exists a two-form F (1.10) such that E + F is closed then E, satisfy
the conditions (1.15).

We are ready to prove the equivalence of the conditions (1.15) with variationality of
Eg.

Suppose that E, satisfy the conditions (1.15). We can take the closed two-form «
(1.16), and using the Poincaré Lemma we find a local one-form 6 such that o = d6.
Denote by x the mapping (u, (1, 4", 4", ¢")) — (t,uq", uq", ug") for u € [1, 0], and
(t,q",q",3") € V,where V is a convex open set. We have

0 = (q” /I(E” ox)du)dt
0

. i (1.17)
+(2q”f (Fyyox)udu+¢° (Gm,ox)udu)(dq”—q“dt),
0 0
where F,, and G, are given by (1.14). We put
|
L=q"/ (Ey 0 x)du. (1.18)
0

Since L is a second order Lagrange function, the Euler-Lagrange expressions of L are
aL d oL d* aL

—
9g° dtdq°  dt?93§°

AL f‘ ' /QE,
= (Ec,ox)du+q"/ ox)udu,
dq° 0 0 (340 )
aL ' /9E,
— = ( — o x)udu,
9g° o \dg°

;;, =qv/0|(25: ox)udu.

Ea (L) =

Now,
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Using the formula

1
E(,=/ d((Ey o x)u)
0
1 ) 1 aEn
:/O(E(,ox)du-i-q /0 (3quox)“d“

1 1

AE, 0E,
7" du+qg" du,
+4q /(;(aqvox)u u q-/(;(aévox)u u

and conditions (1.15), we get by a direct computation that £, — E, (L) = 0, proving that
the E, are Euler-Lagrange expressions of the Lagrange function (1.18).

Conversely, suppose that E, are variational, let L be a Lagrange function for E,. Put
E =E;(L)dq° Ndt and

Fo— 1<8E,,(L) B BEv(L)) _ l( d°L B 3°L )
4\ 9gY 9q° 2\9q°9qY  3q9q°
G — l(aE(, " aEl,) _ 3°L
AN VTR VP A VLE VI
Now it is easy to show that @ = E + F is closed. By the above proposition, £, satisfy

(1.15).
Note that « = d6; where

oL )
0, =Ldt +—(dq° —¢°dt)
aq°

is the famous 1-form, usually called Cartan form. This form was introduced to the calculus
of variations independently by E. T. Whittaker [1] and E. Cartan [1].

Although not apparent at a first sight, conditions (1.15) represent an equivalent form
of the Helmholtz conditions (1.8). To check this, it is sufficient to substitute into (1.15)
the relation E, = A, + B,,g". Then one gets the identities (1.15) in the form (1.8) plus
one additional identity,

dBs, 0By, 1 0 (BA,, 6Av)
dg”  8q°  208gP\dq°  08g¢° /)’
for all o, v, p. The latter identity, however, is not independent. To see this, let us denote
oy = I(Z)A,, BAV> Uy = l(aA,, 1 E)AI,)
7 2\agy ago/ TN T 2\agr T age )
Evidently, the functions ¢,, and v, identically obey the relation
0oy _ Wps _ Vo
agr ag" 3g°
Now, the third condition of (1.8) in terms of v/, reads
dBy,
I//rfv = dt

(1.19)

(1.20)

which implies that B
a‘!’m} _ BBav d aBn’v

agr aq”r dt 3g°
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Using the first and second identity of (1.8) we get

Wpo Ve 3By,  d 3By, 3B, d 3B, 9B, 3By,

3q*  9¢°  dq" dt 3¢g"  dq° dt dq°  dq°  9q°
Hence, the relation (1.19) identifies with (1.20).

The inverse problem originally posed by Helmholtz is naturally generalized to the
following question, which also is referred to as inverse problem of the calculus of varia-
tions: Under what conditions equations (1.7) are equivalent with some Euler-Lagrange
equations? In other words, one asks whether there exist Euler-Lagrange equations the
solutions of which coincide with the solutions of equations (1.7). In this formulation the
problem is very general and its solution is yet not known. However, one can simplify this
problem restricting the class of equivalent equations, namely, to equations of the form

fi(As + Bsy§") =0, (1.21)

where f are some functions of (¢, g, ¢*). Evidently, equations (1.7) and (1.21) will
have the same solutions in case that the matrix ( f ;,’ ) is everywhere regular. The inverse
problem then takes the following formulation:

Given equations (1.7), find out whether there exists an everywhere regular matrix (f,)
such that the left-hand sides of (1.21) indentify with the Euler-Lagrange expressions of a
Lagrange function.

Such a matrix (f;) is then called a variational integrating factor, or variational mul-
tiplier for the equations (1.7).

It is clear that to solve this problem one can apply Helmoltz conditions (1.8) resp.
(1.15). Putting E, = f; (A, + B;uq") and applying Helmholtz conditions to E}, one
obtains a system of first order partial differential equations for the functions f. Although
some concrete examples can be solved in this way, for a general analysis these equations
are very complicated. This is why the problem has been extensively studied by different
methods (see e.g. N. Ya. Sonin [1], G. Darboux [1], J. Douglas [1], P. Havas [1], W. Sarlet
[1,2,3], M. Henneaux [1,2], I. Anderson and G. Thompson [1], M. Crampin, W. Sarlet,
E. Martinez, G. B. Byrnes, and G. E. Prince [1], and many others).

However, the situation extremely simplifies if m = 1, i.e., if variational integrating
factors for one ordinary (nondegenerate) second-order differential equation are studied.
In this case one can consider the equation in the form

4—8=0, (1.22)
and the Helmbholtz conditions (1.15) applied to f (g — g) reduce to a single equation

y +fa_g_+%+§f_'=

0
39 72 "o " 8g°

for f(t,q,q) # 0, which is equivalent to

dlnf dlnf dln f g
+ ] + +—==0.
Py 3g 17 "ag 5T 3g
The general solution of such equations depends upon a single arbitrary function of any
two specific solutions of the corresponding homogeneous equation. Consequently the




