< L3

SN L
A, % »\Qa )
W

Se L,

bt
e




ADVANCES
IN
DATA BASE THEORY

Volume 2

Edited by

Herveée Gallaire

CGE—Laboratoire de Marcoussis
Marcoussis, France

Jack Minker

University of Maryland
College Park, Maryland

and
Jean Marie Nicolas

Centre d’Etudes et de Recherches de Toulouse
Toulouse, France

PLENUM PRESS 8 NEW YORK AND LONDON



Library of Congress Cataloging in Publication Data
Main entry under title:
Advances in data base theory.

“Based on the proceedings of the Workshop on Logical Bases for Data Bases, held
December 14—17, 1982, at the Centre d’études et de recherches de 'Ecole nationale
supérieure de I'aéronautique et de I'espace de Toulouse (CERT), in Toulouse, France.
—T.p. verso.

Includes bibliographies and indexes.

1. Data base management. |. Gallaire, Hervé. Il. Minker, Jack. lll. Nicolas, Jean
Marie. IV. Workshop on Formal Bases for Data Bases (1979 : Toulouse, France)
QA76.9.D3A347 001.64'2 81-116229

ISBN 0-306-41636-0 (v. 2)

Proceedings of the Workshop on Logical Bases for Data Bases, held
December 14—17, 1982, at the Centre d’'Etudes et de Recherches de I'Ecole
Nationale Supérieure de I'Aéronautique et de I'Espace de Toulouse (CERT), in
Toulouse, France

© 1984 Plenum Press, New York
A Division of Plenum Publishing Corporation
233 Spring Street, New York, N.Y. 10013

All rights reserved

No parts of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording, or otherwise, without written permission from the Publisher

Printed in the United States of America



FOREWORD

This is the third book devoted to theoretical issues in data-
bases that we have edited. Each book has been the outgrowth of
papers held at a workshop in Toulouse, France. The first workshop,
held in 1977 focused primarily on the important topic of logic and
databases. The book, Logic and Databases was the result of this
effort. The diverse uses of logic for databases such as its use
as a theoretical basis for databases, for deduction and for integ-
rity constraints formulation and checking was described in the
chapters of the book.

The interest generated by the first workshop led to the deci-
sion to conduct other workshops focused on theoretical issues in
databases. 1In addition to logic and databases the types of papers
were expanded to include other important theoretical issues such
as dependency theory which, although it sometimes uses logic as a
basis, does not fit with our intended meaning of logic and databases
explored at the first workshop. Because of the broader coverage,
and because we anticipated further workshops, the second book was
entitled, Advances in Database Theory - Volume 1. The book "Logic
and Databases" should be considered Volume O of this series.

The current book, Advances in Database Theory -~ Volume 2, is
an outgrowth of a workshop held in Toulouse, France, December 14-
17, 1982. As with the earlier workshops, the meetings were con-
ducted at the Centre d'Etudes et de Recherches de 1'Ecole Nationale
Superieure de 1'Aeronautique et de 1'Espace de Toulouse (C.E.R.T.).
We are pleased to acknowledge the financial support received from
the Direction des Recherches Etudes et Techniques de la Delegation
Generale pour 1'Armement (D.R.E.T.), and from C.E.R.T. that made
the workshop possible.

As was the case for its predecessors, the chapters of this book
are based on substantially revised versions of papers presented at
the workshop. Each chapter included in the book was reviewed by
at least three experts in the field — both individuals who attended
the workshop and others who did not attend the workshop. 1In addi-
tion, every paper was reviewed by at least one of the editors who



vi FOREWORD

was responsible for recommending the paper for inclusion in the
book. We are indebted to our referees for their thorough review

and constructive comments made on the papers. Their comments served
to substantially improve each paper.

This book, as well as the previous books, can be used as the
basis of a graduate seminar in computer science. Students should
have a first level course in database systems and some background
in mathematical logic and algebra.

The book starts with an introductory section which summarizes
achievements in each paper. Background material is not covered
since it may be found partly in the introductions to the previous
volumes and in books that have been published. Following this
introduction, the chapters in the book are grouped into five sec-
tions devoted respectively to

(1) Database Schema Design: Cycles and Decomposition

(2) Integrity Constraints

(3) Incomplete Information

(4) Abstract Data Types for Formal Specifications and Views
(5) Query Language Theory

Our grateful appreciation goes to Constance Engle who typed the
the entire book. We also wish to thank Brenda Mauldin, Susan
McCandless and Deven McGraw for their assistance with the book
and in the development of the subject and name indexes. Support
for work on the book was also provided by the Air Force Office of
Scientific Research under AFOSR 01-5-28068, and from the National
Science Foundation under NSF Grant 01-5-23247.

H. Gallaire
J. Minker

J. M. Nicolas
October 1983



INTRODUCTION

The field of databases is still in a state where many practi-
cal questions need to be answered. Even in cases where alternative
solutions have been developed few guidelines exist as to which
solutions should be preferred and why they are to be preferred.

The following questions are among those raised when defining data-
base schemas and manipulating database information:

- How, and by what criteria, does one choose a type of schema?

- How does one specify a particular schema corresponding to an
application?

- How does one express, and conveniently handle, database
constraints?

- How does one deal with real-world properties such as the
incompleteness of information?

- How does one express user queries in a simple manner, given a
database schema?

Corresponding to each such practical question one can develop
a theoretical framework in which a better understanding of the
issues can be achieved. This volume of articles deals with the
theoretical counterpart of some of the above questions. As such,
it covers only a few of the many much needed investigations reported
in the literature and devoted to theoretical aspects of databases.
It is not surprising that with the many problems that need to be
solved, alternative formalisms need to be introduced. Mathematical
logic is one such formalism. It is certainly the one most used
as it is applicable to many database problems, not only that of
developing a deductive capability for a database. Other formalisms
that have been used include algebra, and the theory of hypergraphs.
Each of the five sections of the book, excluding this introductory
section, addresses a specific topic. Each topic covers practical
questions attacked either by mathematical logic, algebra or
hypergraph theory. The five major topics covered in the book are:

ix



X INTRODUCTION

1. Database Schema Design: Cycles and Decomposition.
2. Integrity Constraints.
Incomplete Information.
4. Abstract Data Types for Formal Specifications and Views.
Query Language Theory.
Below we provide an overview of the chapters in each section. The
reader is assumed to have a background in the areas of research
covered in the chapters. Background material can be found in
standard texts or articles listed below.
° Logic:
Introduction to Mathematical Logic by Mendelson [1964].
. Databases:
Principles of Database Systems by Ullman [1980], or
The Theory of Relational Databases by Maier [1983]
° Logic and Databases:
Logic and Databases by Gallaire and Minker [1978] and
Advances in Database Theory - Volume I, by Gallaire, Minker
and Nicolas [1981] (in particular the introductory chapters
to these books).
Graphs and Hypergraphs:
Graphs and Hypergraphs by Berge [1970].
* Algebra Theory:
An Initial Algebra Approach to the Specification, Correctness
and Implementation of Abstract Data Types, by Goguen,
Thatcher and Wagner [1976].

Section 1. Database Schema Design: Cycles and Decomposition

The purpose of design theory for relational database schemas
is to characterize schemas which present desirable properties with
regard to data representation and data manipulation. Central to
this theory are the notions of dependencies, normal forms, lossless
decompositions, dependency preservation and that of schema acycli-
city introduced only recently. As argued by its promoters this
last notion is interesting because it characterizes schemas for
which various problems can be solved by efficient algorithms and
schemas particularly appropriate for query evaluation on the so-



INTRODUCTION xi

called universal relation interfaces. An increasing number of
researchers are now investigating this new notion of acyclicity
and its various impacts; thus not surprisingly, four of the five
chapters in this section are concerned, to various degrees, with
cyclic/acyclic schemas.

The chapter by Biskup and Bruggemann is devoted to the develop-
ment of a method that synthesizes an acyclic database schema in
third normal form (3NF) which meets the lossless join and dependency
preserving conditions. This method achieves acyclicity by extending
a previously defined synthesis algorithm. It is based on properties
of acyclicity which are exhibited in this chapter; some of them
present an interest which goes beyond their use for defining the
method.

The results presented by Ausiello, D'Atri and Moscarini should
have significant implications on the efficiency of query evaluation
on a universal relation interface. They study various minimality
notions of attribute set covering by a set of relation schemas,
and determine the computational complexity of finding such minimal
coverings while relating it to the degree of acyclicity of the data-
base schema.

Hanatani introduces the notion of "simplicity" as an extension
to the concept of acyclicity for characterizing "superficial" cycles.
A simple join dependency (JD) can be decomposed into two orthogonal
parts: an acyclic JD which has the same multivalued dependency (MVD)
structure as the initial JD and a set of embedded ("local) JDs.

In other words, Hanatani provides an interesting characterization

of relation schemas which imply the same MVDs as some acyclic rela-
tion schema.

Finally, the last two chapters in this section, respectively
by Gyssens and Paredaens, and by De Bra and Paredaens, are devoted
to relation decomposition. Gyssens and Paredaens present a metho-
dology for decomposing cyclic (as well as acyclic) relation schemas.
The proposed methodology is proven to decompose any decomposable
relation and to produce a set of nonredundant relations. The kind
of decomposition dealt with by De Bra and Paredaens, horizontal
decomposition, does not relate to problems associated with
acyclicity/cyclicity. Horizontal decomposition is introduced to
handle "exceptions" to functional dependencies (FDs), which, in
practice, are quite important. A clear theoretical treatment is
given of "almost FDs'", and appropriate normal forms are defined.



xii INTRODUCTION

Section 2. Integrity Constraints

For almost ten years a number of papers have been published
on integrity constraints. However, most papers were devoted to
state (or static) constraints and to their classification according
to various criteria. A number of papers have been concerned with
finding efficient techniques to enforce integrity constraints on
databases and an adequate formalism to express transition con-
straints. Two of the three chapters in this section deal with
enforcement techniques, whereas the third is concerned with trans-
ition constraint formulation.

Henschen, McCune and Naqvi rely on a logical formulation of
both integrity constraints and database transactions (updates,
insertions, and deletions) to propose and justify a method based
on theorem-proving techniques, for generating, at compile time,
all specific tests. These tests are to be performed (and they can
be performed in a much more efficient way) in place of constraint
evaluation when actual database changes arise. As noted in the
chapter, some open theoretical problems remain. Nevertheless this
approach is quite convincingly argued and can be considered as a
most promising one for efficient integrity enforcement.

Another interesting approach is that proposed by Paige. He
shows how techniques of finite differencing, he developed elsewhere,
can be applied to improve the enforcement of integrity constraints.
The technique relies on maintaining some extra data, termed
"differential" stored views, which can be used for reducing signi-
ficantly the constraint evaluation cost. Of course, the maintenance
cost of differential views should be low for the method to be bene-
ficial. Paige characterizes a class of constraints for which this
is the case.

Casanova and Furtado present a family of temporal languages
to describe transition constraints. They prove various results
about the decision problem for these languages, investigate their
expressive power and compare their approach using temporal logic
with an approach that uses a first-order logic formulation.

Section 3. Incomplete Information

Very few systems attempt to deal with incomplete information
because, in the presence of incomplete information, one has to
appeal to more elaborate question-answering and integrity mainten-
ance techniques. One way to deal with this problem is to formulate
the database in logical terms and then use the proof theoretic view
of a database to formalize some form of nonmonotonic reasoning.
Nonmonotonic reasoning does not guarantee the validity of previous



INTRODUCTION xiii

answers when more information is added. Bossu and Siegel describe

a system of nonmonotonic reasoning based on the notion of order-

ing of interpretations and of minimal models. This form of reason—
ing handles formulas expressive enough for integrity rules, trans-
ition rules, and queries. The system can check, for any transaction
made to a database, whether it is valid with respect to integrity
and transition rules. The proof procedure they present is complete.
The work is important in that it handles incomplete information
correctly. However, this approach seems to need additional work

to be computationally efficient in general.

In the same vein, namely the need to enlarge the type of
information, queries and answers in a database system, Imielinski
takes on an algebraic approach to answering queries in an attempt
to avoid costly theorem proving techniques. He shows how exten—
sions to relational algebra methods allows one to approximate
answers in a database that contains incomplete data. He first
defines an answer to a query when the database is a collection of
arbitrary formulas. By representing formulas by tables (termed
V-table), classical algebraic manipulations can be extended to
such formulas. However, if a precise answer is needed he must
resort to the logic proof theoretic view of databases. His method
attempts to combine the best features of the relational algebra
while resorting to theorem proving techniques for only a few cases.

Section 4. Abstract Data Types for Formal Specifications and Views

The abstract data types formalism has been used extensively
to specify data structures and operations made on them. Since a
database is a collection of data structures on which specific trans-
actions are allowed, the formalism should be applicable to the
specification of a database. Veloso and Furtado provide a specific
multistep method to specify a database. The method proceeds from
a high level specification to an executable one. At each level
the algebraic style is preserved. The major idea is to specify a
state of the database by the trace of transactions that yield the
state. Equivalence of traces is formally defined and forms the
basis of transformations applied at each step of the method.

A different use of abstract data type theory is made by Paolini
and Zicari whose goal is to provide a framework for studying data-
base views. Because views are abstractions of databases. algebra
theory gives a formal expression of views and databases: a view can
be obtained by a morphism applied to the database. Depending on
mathematical properties of morphisms, views behave differently under
user operations and thus view updates affect the underlying database
differently. A classification of views is then obtained that relies
on notions such as complete, total, strongly consistent views.



xiv INTRODUCTION

Section 5. Query Language Theory

No agreement has been reached on the choice of query languages
with respect to such factors as expressive power, or user friendli-
ness. Fundamental to possibly answering these questions is the
need to study the equivalence of queries. Such a study should also
help to solve query optimization problems. Restricting themselves
to the attribute relational algebra, based on natural joins and
relations with columns corresponding to attributes and to the
propositional relational algebra, Imielinski and Lipski show that
for any reasonably complex database, equivalence and finite equiva-
lence of queries are undecidable problems.

References
1. Berge, C. [1970] Graphs and Hypergraphs, Dunod, Paris.

2. Gallaire, H., and Minker, J., Eds. [1978] Logic and Databases,
Plenum Publishing Co., New York, N. Y.

3 Gallaire, H., Minker, J. and Nicolas, J.-M., Eds. [1981]
Advances in Database Theory - Volume I, Plenum Publishing Co.,
New York, N. Y.

4, Goguen, J. G., Thatcher, C. W. and Wagner, E. G. [1976]
"An Initial Algebra Approach to the Specification, Correctness,
and Implementation of Abstract Data Types', 1In: Current Trends
in Programming Methodology, Volume 3, Data Structuring,
(R. Yeh, Ed.), Prentice-Hall, Englewood Cliffs, N. J.

5. Maier, D. [1983] The Theory of Relational Databses, Computer
Science Press, Inc., Potomac, MD.

6. Mendelson, E. [1964] Introduction to Mathematical Logic,
D. Van Nostrand, New York.

7 Ullman, J. D. [1980] PpPrinciples of Database Systems,
Computer Science Press, Inc., Potomac, MD.



CONTENTS

FOREWORD
INTRODUCTION
DATABASE SCHEMA DESIGN: CYCLES AND DECOMPOSITION

Towards Designing Acyclic Database Schemes,
J. Biskup and H. H. Briiggemann

Minimal Coverings of Acyclic Database Schemata,
G. Ausiello, A. D'Atri, and M. Moscarini

Eliminating Cycles in Database Schemas,
Y. Hanatani

A Decomposition Method for Cyclic Databases,
M. Gyssens and J. Paredaens

Horizontal Decomposition for Handling Exceptions
to Functional Dependencies,
P. De Bra and J. Paredaens

INTEGRITY CONSTRAINTS

Compiling Constraint-Checking Programs from
First-Order Formulas,
L. J. Henschen, W. W. McCune, and S. A. Nagvi

Applications of Finite Differencing to Database
Integrity Control and Query/Transaction-Optimization,
R. Paige

A Family of Temporal Languages for the Description

of Transition Constraints,
M. A. Casanova and A. L. Furtado

vii

ix

27

53

85

123

145

171

211



viii
INCOMPLETE INFORMATION

Nonmonotonic Reasoning and Databases,
G. Bossu and P. Siegel

On Algebraic Query Processing in Logical Databases,
T. Imielinski

ABSTRACT DATA TYPES FOR FORMAL SPECIFICATIONS AND VIEWS

Stepwise Construction of Algebraic Specifications,
P. A. S. Veloso and A. L. Furtado

Properties of Views and Their Implementation,
P. Paolini and R. Zicari

QUERY LANGUAGE THEORY
On the Undecidability of Equivalence Problems for
Relational Expressions,
T. Imielinski and W. Lipski, Jr.

NAME INDEX

SUBJECT INDEX

LIST OF REFEREES

ADDRESSES OF CONTRIBUTING AUTHORS

CONTENTS

239

285

321

353

393

411
415
425

427



DATABASE SCHEMA DESIGN:
CYCLES AND DECOMPOSITION







TOWARDS DESIGNING ACYCLIC DATABASE SCHEMES

Joachim Biskup and Hans Hermann Brﬁggemann
Universitat Dortmund

Dortmund, West Germany

ABSTRACT

We present a modification of the synthesizing method (Bernstein
[1976]), Biskup et al [1979]) to produce a third normal form,
dependency preserving, lossless join decomposition of a universal
relation scheme which is additionally acyclic. Our method essenti-
ally uses the options of the original method of how to group
functional dependencies with the identical left hand side. Further-
more we present a decomposition theorem for acyclic database schemes.

INTRODUCTION

For the relational model of databases several formal methods
for supporting the design of database schemes have been presented
(see, for instance, Chapter 5 of Ullman [1980]). By these methods
we can assure that the designed database scheme has certain desir-
able properties. Some of these properties, such as third normal
form, lossless join, or dependency preservation, are exactly defined
in terms of a given set of semantic constraints (mainly functional
or multivaled dependencies), whereas other properties, such as
avoiding update anomalies or eliminating redundancy, are stated more
intuitively. Recently the notion of acyclic database schemes has
been proposed as a further desirable property of relational database
schemes. See for instance Beeri et al. [1981], Beeri et al. [1983],
Chase [1981], Fagin et al. [1982], Goodman and Shmueli [1983], Hull
[1983], and Maier and Ullman [1982]. A recent survey on acylic
database schemes is presented in Fagin [1983]. Properties of acyclic
database schemes are studied in the proceedings from which this
book is drawn, by Ausiello et al. [1982], Gyssens and Paredaens

3



4 BISKUP AND BRUGGEMANN

[1982], and Hanatani [1982]. For instance, for an acyclic database
scheme we can evaluate queries unambiguously with respect to a
universal relation interface (queries that are expressed by means
of attributes without mentioning relation names).

Currently we concern ourselves with studying the problem of
how to use, respectively modify, the known formal design methods
in order to obtain an acyclic database scheme whenever it is possi-
ble. 1In this chapter we propose an elaboration of the synthesizing
method, Bernstein [1976], Biskup et al. [1979], and present some
general properties of acyclic database schemes.

The synthesizing method is directed towards producing a third
normal form, dependency preserving, and lossless join decomposition
of a universal relation scheme that is essentially given by a set
of functional dependencies. A functional dependency is a semantic
constraint of the form R | A where R is a set of attributes and
A is an attribute. A relation (set of tuples) satisfies R|+ A
if any two tuples of r that agree on R also agree on A. The
synthesizing method roughly proceeds as follows:

input: A set of functional dependencies F.
method :

1. [achieve third normal form]
Eliminate redundancies from F.
2. [achieve lossless join]

If there is no R A € F such that R contains a key,
then determine a key K.

3. [achieve dependency preservation]

For R¢+ Al E Py wwms R’+ € F form a relation scheme

RU {Al,...,Ak}; any dependency of F must be used at

least oOnce.

Depending on step 2 take K as an additional relation scheme.

At each step this method is not fully specified because we
have several options:

= how to eliminate redundancy,

- which key to use,

- how to group functional dependencies with identical left
hand sides.

By making good choices of the options we may affect the acycli-
city property of the output database scheme. For the third option
of grouping this can be demonstrated by the following example.



