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Preface

’

The theory of functlons of a complex variable, also called for brevity complex vana’oles )
or complex analysis, is one of the most beautiful as well as useful branches of mathematics.
Although originating in an atm_osphere of mystery, suspicion and distrust,.as eviderced by
the terms “imaginary” and “complex’” present in the literature, it was finally placed on a
sound foundation in the 19th century through the efforts of Cauchy, Rlemann, Weieérstrass,

. Gauss and other great mathemat1c1ans

‘ Today the su_bject is recognized as an essential part of the mathematical background
of engineers, physicists, mathematicians and other scientists. From the theoretical view-
point this is because many mathematical concepts become clarified and unified when
examined in the light of complex variable theory. From the applied viewpoint the theory
is of tremendous value in the solution of problems of heat flow, potential theory, fluid’
mechanics, electromagnetic theory, aerodynamics, elasticity and many other fields of
science and engineering.

This book is designed for use as a supplement to all current standard texts or as a
textbook for a formal course in complex variable theory and applications. It should also be
of considerable value to those taking courses in mathematics, physics, aerodynamics, elas-
ticity or any of the numerous other fields in which complex variable methods are employed.

Each chapter begins with a clear statement of pertinent definitions, priﬁcip]es and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles so
vital to effective learning. Numerous proofs of theorems and derivations of formulas are
included among the solved problems. The large number of supplementary problems with
answers serve as a complete review of the material in each chapter.

Topics covered include the algebra and geometry of complex numbers, complex differ-
ential and integral calculus, infinite series including Taylor and Laurent series, the theory
of residues with applications to the evaluation of integrals and series, and conformal
mapping with applications drawn from various fields. An added feature is the chapter
on special topics which should prove useful as an introduction to some more advanced topics.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful book
~of reference and to stimulate further interest in the topics.

I wish to take this opportunity to thank the staff of the Schaum Publishing Company
. for their splendid cooperation.

M. R. SPIEGEL

Rensselaer Polytechnic Institute
.J uly, 1964
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Chabter 1

Complex Numbers

THE REAL NUMBER SYSTEM

The number system as we know it today is a result of gradual development as indicated
in the following list.

1. Natural numbers 1,2,3,4,..., also called positive integers, were first used in
counting. The symbols varied with the times, e.g. the Romans used I, II, III, IV, .
If @ and b are natural numbers, the sum a + b and.product a-b, (a)(b) or ab are
also natural numbers. For this reason the set of natural numbers is said to be
closed under the operations of addition and multiplication or to satisfy the closure
property with respect to these operations.

2. Negative integers and zero, denoted by —1,—-2,—38, ... and 0 respectively, arose
to permit solutions of equations such as z+b = a where a and b are any natural
numbers. This leads to the operation of subtraction, or itnverse of addition, and
we write z = a—b. »

The set of positive and negative integers and zero is called the set of integers
and is closed under the operations of addition, multiplication and subtraction.

3. Rational numbers or fractions such as %,—§,... arose to permit solutions of
equations such as bz =a for all integers a@ and b where b+0. This leads to the
operation of -division or inverse of multiplication, and we write x =a/b or a+b
[called the quotient of a and b] where a is the numerator and b is the denominator. -

The set of integers is a part or subset of the rational numbers, since integers
correspond to rational numbeis a/b where b=1.

The set of rational numbers is closed under the operations of addition, sub-
traction, multiplication and division, S0 long as division by zero is excluded.

4. Irrational numbers such as \/2=1.41423--. and ~=3.14159--- are numbers
which are not rational, i.e. cannot be expressed as a/b where a and b are integers
and b +#0.

The set of rational and irrational numbers is called the set of 7real numbers. It is
assumed that the student is already familiar with the various operations on real numbers.

GRAPHICAL REPRESENTATION OF REAL NUMBERS

Real numbers can be represented by points on a line called the rzal axis, as indicated
in Fig. 1-1. The point corresponding to zero is called the origin.

[ phes Y R r'

-4 -3 -2 . -1 0 1 2

w +
- 4

Fig. 1-1

Conversely, to each point on the line there is one and only one real number. If a
point A corresponding to a real number a lies.to the right of a point B corresponding to
a real number b, we say that a is greater than b or'b is less than a and write respectively
a> b\ or b<a.
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The set of all values of z such that e <z <b is called an open interval on the real axis
while @ =z = b, which also includes the endpoints @ and b, is called a closed interval. The
symbol x, which can stand for any of a set of real numbers, is called a real variable.

The absolute value of a real number a, denoted by |a|, is equal to a if a>0, to —a if
a <0 and to 0 if a=0. The distance between two points a@ and b on the real axis is [a —b|.

THE COMPLEX NUMBER SYSTEM

There is no real number z which satisfies the polynomial equation 22+1 = 0. To
permit solutions of this and similar equations, the set 'of compnlex numbers is introduced.

We can consider a complex. number as having the form a + bi where @ and b are real
numbers and %, which is called the imaginary unit, has the property that ¢?=-1. If
z = a + bi, then a is called the real part of z and b is called the imaginary part of z and:
are denoted by Re {z} and Im {z} respectively. The symbol z; which can stand for any of
a set of complex numbers, is called a complex variable.

Two complex numbers a + bi and ¢+ di are equal if and only if a=¢ and b=d. We
can consider real numbers as a subset of the set of complex numbers with b=0. Thus
the complex numbers 0 -+ 0¢ and —3 + 07 represent the real numbers 0 and —3 respectively.
If @ =0, the complex number 0+ bt or bi is talled a pure imaginary number.

The complex conjugate, or ~brieﬂy conjugate, of a complex number a+ bt is a — bi.
The complex conjugate of a complex number z is often indicated by Z or z*.

FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS
In performing operations with complex numbers we can proceed as in the algebra
of real numbers, replacing ¢2 by —1 when it occurs.

1. Addition . .
(@+bt) +(c+di) = a+bi+c+di = (a+c¢)+ (b+d)

2. Subtraction .
(@+bi) —(c+di) = a+bi—c—di = (a—c)+ (b—d)

3. Multiplication ;
(a+bt)(c +di) = ac+ adi + bet + bdi? = (ac — bd)+ (ed + be)i
4. Division

atbi _ a+bi c—di _ ac — adi + bei — bdi
c+di ~ c+di c—di ¢t —du2
_ ac+bd+(bc—ad) _ ac+bd n b’c—adi
h ¢+ d? Tt +d? c*+d? -

ABSOLUTE VALUE
The absolute value or modulus of a complex number a+ bi is defined as la+bi| =

Va®+ b2,
Example: |—4+2i| = /(=42 + (2)2 = V20 = 2Vb

If 2,205,235 ...,2n are complex numbers, the following properties hold.
L |z12e] = |2 |2 or |2122 -+~ 2m| = |21 22| - - |2m|
21 ]le .
2. |=| = —
P 2] if | 2270
3. |aitz| = 2]+ |2 or |zit2ze+ o +zm| = |2 + |22 + -+ + |2m|
4. |21 +22‘ = }z;] == !22{ or . le'—Zzl = 121[ — [Zzl



CHAP. 1] COMPLEX NUMBERS 3

AXIOMATIC FOUNDATIONS OF THE COMPLEX NUMBER SYSTEM

From a strictly logical point of view it is desirable to define a complex number as
an ordered pair (a,b) of real numbers a and b subject to certain operational definitions
which turn out to be equivalent to those above. These definitions are as follows, where
all letters represent real numbers.

A. Equality (a,b) = (¢,d) ifandonlyifa=c¢ b=d
B. Sum (a,b) +(c,d) = (a+c, b+d)
C. Product (a,b)+(c,d) = (ac—bd, ad+ be)
v m(a,b) =*(ma, mb)
From these we can show [Problem 14] that (a,b) = a(1,0) + 5(0,1) and we associate
this with a + b¢ where ¢ is the symbol for (0,1) and has the property that 2 = (0,1)(0,1) =
(=1, 0) [which can be considered equivalent to the real number —1] and (1,0) can be con-

sidered equivalent to the real number 1. The ordered pair (0,0) corresponds to the real
number 0.

From the above we can prove that if z,, 22, 23 belong to the set S of complex numbers,
then '

1. 2z;+2; and 222 belong to S Closure law

2. z1+2 = 22tz " Commutative law of addition

3. z1+ (22+23) = (z1+2) + 23 Associative law of-gddition

4. 2120 = 22y Commutative law of multiplication

5. 2z1(2223) = (2122)2s3 Associatiwe law of multiplication

6. 21(22+23) = 2122 + 2123 Distributive law

7. 21+0 =042 = 2z, 12 = 211 = 21, 0 is called the identity with respect to

addition, 1 is called the identity with respect to multiplication.

8. For any complex number z; there is a unique number z in S such that z+2z;, = 0;
z is called the inverse of z with respect to addition and is .denoted by —zi.

9. For any z; # 0 there is a unique number z in S such that 21z = zz; =1; 2z is called
the inverse of z with respect to multiplication and is denoted by zi! or 1/z:.

In general any set, such as S, whose members satisfy the above is called a field.

GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS

If real scales are chosen on two mutually perpendicular axes X’0OX and Y’OY [called
the x and y axes respectively] as in Fig. 1-2, we can locate any point, in the plane de-
termined by these lines, by the ordered pair of real numbers (z,y) called rectangular
coordinates of the point. Examples of the location of such points are indicated by P,Q,

R,S and T in Tig. 1-2.- Y|
14

Since a complex number z+iy can be P(3,4)
considered as an ordered pair of real numbers, "Q(—-3,3 |°
we can represent such numbers by points in te
an 2y plane called the complex plane or Argand
diagram. The complex number -represented
by P, for example, could then be read as
either (3,4) or 3+4i. To each complex num-
ber there corresponds one and only one point .
in the plane, and conversely to each point in R(—2.5,—-1.5) 1.,
the plane there corresponds one and only one .
complex number. Because of this we often Y -
refer to-the complex number 2z as the point z. Fig. 1-2¢

T(2.5,0)
X' 4 -3 =g =1 0 1 2 35 4 X

°S(2, —2)
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Sometimes we refer to the z and y axes as the real and imaginary axes respectively and
to the complex plane as the z plane. The distance between two points z; = 21 +14y: and

z2 = x2+iy. in the complex plane is given by |21—2s| = V(21— 22)® + (y1 — ¥2)*

POLAR FORM OF COMPLEX NUMBERS

If P is a point in the complex plane corre-
sponding to the complex number (x, ¥) or x + iy,
then we see from Fig. 1-3 that

r=1c086, Yy =rsind

where r = /a>+9® = |2 +1iy| is called the P(z,y)
modulus or absolute value of 2z = x+1y [de- r D
noted by mod z or |z|]; and 6, called the ampli- .
tude or argument of z = x+1iy [denoted by . : 3 : X
arg z], is the angle which line OP makes with . o
the positive x axis.

It follows that
2 =x+1y = r(cosfd + isinf) (2)

which is called the polar form of the complex =

number, and 7 and # are called polar coordi-
nates. It is sometimes convenient to write the
abbreviation cis § for cos + i siné.

For any complex number z+#0 there corresponds only one value of § in 0=6<2x.
However, any other interval of length 2, for example —x<60=w, can be used. Any
particular choice, decided upon in advance, i$ called the principal range, and the value of §
is called its principal valwe.

Fig.1-3

DE MOIVRE’S THEOREM
~If zy =21+ = 7 (cosh+1isind,) and =z, = :vg+zy2 = 73 (cos 2 +isin 02) we can
show that [see Problem 19]

2122 = 7172 {cos (01 + Oz)-+ % sin (01 + 02)} (2)
; = -:—E{cos(al—02)+isin(01—02)} 3)

A generallzatxon of (2) leads to

2122 2n = e 1a {COS(O1+ G2+ +0a) + ESin(01+ 024 -+ 0a)} (4)
and if z; =2 = -+ =2, =2 this becomes
2" = {r(cosf + i8in@)}" = r"(cosnb + 1 sinnd) (%)

which is often called De Moivre’s theorem.

ROOTS OF COMPLEX NUMBERS .
A number w is called an nth root of a complex number.z if w"=2, and we write
w=2"". From De Moivre’s theorem we can show that if n is a positive integer,

2Vn = (r(cosf + ising)}'"

| / , '
= i ’(fos”ii-zi’f> + isin <"+2"">} k=012 .. .,1n-1 (6)
]‘ \ " n
from which it follows that there are n different values for zV", i.e. n different nth roots
of 2, provided z+0.
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EULER’S FORMULA

By assuming that the infinite series expansion e* = 1+z+x%2!+2%/3!+ ... of’
. elementary calculus holds when x =10, we can arrive at the result
’ € = cosf + isind e = 2.71828. . - (7)

~ which is called Euler’s formula. It is'more ‘convenient, however, sxmply to take (7) as a
definition of e®. In general, we define

e* = e*tW = eTe¥ = e*(cosy + isiny) (8)
In the special case where ¥ =0 this reduces to e®.

Note that in terms of (?) De Moivre’s theorem essentially reduces to (e®)" = e*f,

POLYNOMIAL EQUATIONS
Often in practice we require solutions of polynomlal equations having the form

Ao2™ + a1 2"~ ‘+a22" 24 .. +aﬂ—lz+an =0 (9)

where ao#0, a1, ...,a, are given complex numbers and n is a positive integer called
the degree of the equation. Such solutions are also called zeros of the polynomial on the
left of. (9) or roots of the equation.

A very important theorem called the fundamental theorem of algebra [to be proved
in Chapter 5] states that every polynomial equation of the form (9) has at least one root
which is complex. From this we can show that it has in fact n complex roots, some or all
of which may be ldentlcal

If 21,20, ...,2, are the n roots, (9) can be written
a(z—21)(z—22) -~ (2—2a) = 0 (10)

which is called the factored form of the polynomial equatlon Conversely if we can write
(9) in the form (10), we can easily determine the roots.

THE nth ROOTS OF UNITY

The solutions of the equation z"=1 where n is a positive integer are called the
nth roots of unity and are given by

-z = cos2kx/n + i8in2kn/n = e¥*mn k=012 ...,n—1 (11)

If we let o = cos2x/n+18in2x/n = €*™/*, the m roots are 1,0,0% .7.,0" L Geo-
metrically they represent the n vertices of a regular polygon of n sides inscribed in a circle
of radius one with center at the origin. This circle has the equation |z{|=1 and is often
called the unit circle. -

VECTOR INTERPRETATION OF COMPLEX NUMBERS
A complex number z = z +ty can be con- y
sidered as a vector OP whose 7itial point is the B
origin O and whose terminal point P is the /
point (x,¥) as in Fig. 1-4. . We sometimes call A
'"OP = x +1y the position vector of P. Two vec- '
tors having the same length or magnitude and
direction but different initial points, such as . o

OP and AB in Fig. 1-4, are considered equal.
Hence we write OP = AB = z +1y. Fig. 1-4
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Addition of complex numbers corresponds
to the parallelogram law for addition of vectors
[see Fig.1-5]. Thus to add the complex num-
bers z; and z:;, we complete the parallelogram
OABC whose sides OA and OC correspond to
z1 and z2. The diagonal OB of this parallelo-
gram corresponds to z; +%2:. See Problem 5. Fig.1-5

~

SPHERICAL REPRESENTATION OF COMPLEX NUMBERS.
STEREOGRAPHIC PROJECTION

Let ¢ [Fig. 1-6] be the Eomplex plane and consider a unit sphere of [radius one| tangent
to P at z=0. The diameter NS is perpendicular to ¢ and we call points N and S the north
and south poles of J. Corresponding to any .
point A on P we can construct line NA inter-
secting of at point A’. Thus to each point of
the complex plane P there corresponds one
and only one point of the sphere of, and we can
represent any complex number by a point on
the sphere. For completeness we say that the
point N itself corresponds to the ‘“point at
infinity”” of the plane. The set of all points
of the complex plane including the point at
infinity is called the entire complex plane, the
entire z plane, or the extended éomplcx plane. Fig. 1-6

The above method for mapping the plane'on to the sphere is called stereographic
projection. The sphere is sometimes called the Riemann sphere.

DOT AND CROSS PRODUCT

Let 2z = x1+14y: and 2z: = 22+1y: be two complex numbers [vectors]. The dot
product [also called the scalar product] of z; and 2. is defined by
21022 = |21 |z2] cos§ = Tixz + Y1y = Re {2122} = }{Ziz2 + 2122} (12)

where 0 is the angle between z; and z: which lies between 0 and =.

The cross product of z, and z» is defined by

Z1X 2y = |21 |z2] SIN0 = 2102 — Y122 = Im {2122} = 2122 — 2122} (13)

Z{
Clearly, .
Z1zs = (21022) + 121 X 22) = |21] |22] €% (14)
If z; and 2. are non-zero, then

1. A necessary and sufficient condition that z; and z: be perpendicular is that
21022 = 0.

2. A necessary and sufficient condition that z; and z. be parallel is that 2z, xz; = 0.
3. The magnitude of the projection of z; on 2z is |2102s|/|22].

* -4. The area of a parallelogram having sides z: and z: is |21 X z2|.
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COMPLEX CONJUGATE COORDINATES

A point in the complex plane can be.located by rectangular_ coordinates (z,y) or polar
coordinates (r,6). Many other possibilities exist. One such possibility uses the fact that

x=3z+2), y= %(z—é) where z = x+1y. The coordinates (z,z) which locate a point

are called complex conjugate coordinates or briefly conjugate coordinates of the point
[see Problems 43 and 44].

POINT SETS

Any collection of points in the complex plane is called a (two-dimensional) point set,
and each point is called a member or element of the set. The following fundamental
definitions are given here for reference.

1. Neighborhoods. A delta, or §, neighborhood of a point z, is the set of all points z
such that |z— 2, < § where & is any given positive number. A deleted § neigh-
borhood of z, is a neighborhood of 2z, in which the point z, is omitted, i.e.
0 < |z — Zo{ < 8.

2. Limit Points. A point z, is called a limit point, cluster point, or point of accumu—-
lation of a point set S if every deleted & neighborhood of 2 contains points of S.

Since § can be any positive number, it follows that S must have infinitely
many points. Note that zo may or may not belong to the set S. -

3. Closed Sets. A set S is said to be closed if every limit point.of S belongs to S,
ie. if S contains all its limit points. For example, the set of all points z such
that |z =1 is a closed set. - .

4. Bounded Sets. A set S is called bounded if we can find a constant M such that
|| <M for every point z in S. An unbounded set is one which is not bounded.
A set which is both bounded and closed is sometimes called compact.

5. Interior, Exterior and Boundary Points. A point z, is called an interior point
of a set S if we can find a § neighborhood of z, all of whose points belong to S. If
every § neighborhood of 2, contains points belonging to S and also points not
belonging to S, then 2, is called a boundary point. If a point is not an interior
or boundary point of a set S, it is an exterior point of S.

"6. Open Sets. An open set is a set which consists only of interior points. For
example, the set of points z such that |2|] <1 is an open set.

7. Connected Sets. An open set S is said to be connected if any two points of the
set can be joined by a path consisting of straight line segments (i.e. a polygonal
path) all points of which are in S.

8. Open Regions or Domains. An open connected set is called an open region or
domain.

9. Closure of a Set. If to a set S we add all the limit points of S, the new set is
called the closure of S and is a closed set.

10. Closed Regions.® The closure of an open region or domain is called a closed
region.

11. Regions. If to an open region or domain we add some, all or none of its limit
points, we obtain a set called a region. If all the limit points are added, the
region is closed; if none are added, the region is open. In this book whenever we
"use the word region without qualifying it, we shall mean open region or_domain.
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Union and Intersection of Sets. A set consisting of all points belonging to set Si
or set S» or to both sets S; and S: is called the union of S; and S: and is denoted
by Si+S: or SiUS..

A set consisting of all points belonging to both sets S; and S. is called the
intersection of S; and S. and is denoted by SiS: or S;N S..

Complément of a Set. A set consisting of all points which do not belong to S is
called the complement of S and is denoted by S.

Null Sets and Subsets. It is convenient to consider a set consisting of no points at
all. This set is called the null set and is denoted by ¢@. If two sets S; and S.
have no points in common (in which case they are called disjoint or mutually
exclusive sets), we can indicate this by writing SiNn S, = Q.

Any set formed by choosing some, all or none of the points of a set S is.
called a subset of S. If we exclude the case where all points of S are chosen,
the set is called a proper subset of S.

Countability of a Set. If the members or elements of a set can be placed into a
one to one correspondence with the natural numbers 1,2,3,.. .., the set is called
countable or denumerable; otherwise it is nom-countadble or non-denumerable.

The following are two important theorems on point sets.

1.

2.

Weierstrass-Bolzano Theorem. Every bounded infinite set has at least one limit
point.

Heine-Borel Theorem. Let S be a compact set each point of which is contained
in one or more of the open sets A, A,, ... [which are then said to cover S]. Then
there exists a finite number of the sets A1, Az, ... which will cover S.

Solved Problems

FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS

1.

Perform each of the indicated operations.

(@) B3+2)+(=T—1i) = 8—T+2—4 = —4+1

() (~T—)+@+2) = —T+3—i+2 = —4+1

The results (a) and (b) illustrate the commutative law of addition.

(c, 8—6i)—(2i—1T) = 8—6i—2i+7 = 15 — 8i )
d) (5+3) + {(—1+2) + (T-5)} = (5+3)+{-1+2i+7—5i} = (5+30) + (6—3i) = 11

(e) {(6+3i)+ (—1+2)}+ (7T—5i) = {5+8i—1+2i} + (7T—5i)

(4+59) + (1—5i) = 11

The results (d) and (e) illustrate the associative law of addition.

(f) (2—39)(4 + 29)
(9) (4+29)(2— 37)

Il

2(4+20) —3(4+2)) = 8+41—12{ —6i2 = 8+ 41— 12i+6 = 14 — 8;
4(2 — 37) + 2i(2 — 31) 8—12i+ 41— 612 = 8— 12t +4i+6 = 14 — 8

Il
Il

The results (f) and (g) illustrate the commutative law of multiplication.

- () (2 —=){(—3+20)(5 —4i)}

(1)

™

(2 = 9){—15+ 12¢{ 4 107 — 82}

(2—)(—T+221) = —14 + 440 + 71 — 22:2 = 8 + bl¢
{(—9)(=8+20)}(5—4i) = {—6+ 4i+ 3i—2i2)(5— 4i)
= (—4+Ti)(6—4)) = —20 + 167 + 361 — 28i2 = 8 + 51t

-esults (k) and (i) illustrate the associative law of multiplication.
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@ (—1+2){(7—57) + (—3+49)} = (—1+ 2i)(4 —1) = —4 +.i + 8 —2i2 = -2+ 9¢
Another method. (=14 20){(7—59) + (-3 + 49)} (=1 +2i)(7— 59) + (—1 + 2i)(—3 + 49)

I

= (8+1979) + (—=5—107) = —2 + 9
This illustrates the distributive law. )
) 32 _ 8-2 —1-i _ —3-3i+2i42? o 5-i _ 5 _ 1,
—1+1 —144i —-1—1 1—142 2 2 2
Another method. By definition, (3 —2i)/(—1 + 1) is that number a + bi, where a and b are real,
such that (—1+7%)(a+bi)) = —a—b+(a—b)i = 3—2i. Then —a—b = 3, a—b = —2 and
solving simultaneously, a = —5/2, b = —1/2 or a+ bi = —5/2 —1/2,
) 5+5i+ 20 _ 5+5i.3+4i+ 20 .4—31'
. 8—41  4+38 = 3—4t 3+41  4+3i 4-—3i
= 156 + 20¢ + 157 + 2012 + 80—60¢ _ —5+35¢ L 80 — 60t _ 3 —
- 9-—16i2 16—92 25 25 :
() 3 =@ 3B — (9% _ 3(=1)1— (—1)%
S el 2i—1 7. -1+
—3+i —1-2 _ 3+6i—i—2%i® _ 5+5 _ | .
—1+2 —-1-2i 1— 442 -~ b '
If z=2+1, 22=8-—27 and z; = ~3 + ~2—z, evaluate each of the following.
(@) |82, —42,] = |3(2+17) —4(3—2i)] = |6+3i—12+8i|

= |—6+11i| = V(—6)2+4+(11)2 = V157

@+i)3—32+)2+42+1) —8&
{(2)3 + 3(2)2() + 3(2) ()2 + i3} — 3(4+4i+i2) + 8 + di — 8
=8+12i—6—i—12—12i+3+8+4i—8 = —7+ 3

Il

() z’; — 322 + 4z, — 8

S — p
. 1,V3.) _ /_1_VBN' L/ 1 VBN
o e = (BIE) - (- - [(3-4)]
1. V3., 3.7 _ 1,V3N\2 _ 1 V3. 3., 1 3.
[x+7’+z’2] = (‘5*7’) S IR S R
2z, +2,—5—i | 23—2i) + (2+17) —5—i|
@D | —nts— 22+1) —(3—2i) +3—1

3—4i* _ [3-4i]2 _ (J@PF(-42)? _
4+3i T l4+38ilz T V(@)2 + (3)2)2 B

Find real numbers x and y such thét 3x+2iy—ix+5y = T+bi.

The given equation can be written as 3x+ 5y +1(2y —x) = 7+ 5i. Then equating real and

imaginary parts, 3z +56y = 7, 2y —x = 5. Solving simultaneously, = —1, y =2.

Prove: (a) z1+ 22 = Zir+ 2, (b) |2122] = |21 22

Let 2, = xy+1y,, 23 = 23+ 1iys. Then

(@) z21t2y = oy +iyy + 23+ Wy, = 2 + 2 + iy + y9)
=zt ay— Wy tys) = xp— Yy tay— iy, = a,+ iy, + xy iy, = E + 2z,

(0) |22l = [(xy+ iy )@+ i) | = |22y — Y1y + i(x Y + yy12y) |

= J@m—yw)? + @t 12?2 = V@it ) (ai+u?) = Vel + 2 Val + 2 = |4z

Another method.
21222 = (2129) (2120) = 2129218, = (212))(22%5) = |24[2]22]2  or  [z120] = [2] ]2,

where we have used the fact that the conjugate of a product of two complex numbers is equal to

the product of their conjugates (see Problem 56).

{—7+5i+ 14i — 1042} + {3 — 4i — 6i + 8i2}
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GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS. VECTORS
5. Perform the indicated operations both analytically and graphically:

@ B+4) + (5+2i), (b) 6-2i) — (2—50), (c) (~3+50) + (4+2i) + (5—34) +
(—4 — 64). '

(@) Analytically.

(B3+4i)+ (54+2) = 3+5+4i+2i = 8+ 6

Graphically. Represent the two complex numbers by points £, and P, respectively as in Fig. 1-7
below. Complete the parallelogram with OP; and OP, as adjacent sides. Point P represents the
sum, 8 + 67, of the two given complex numbers. Note the similarity with the parallelogram law
for addition of vectors OP; and OP, to obtain vector OP. For this reason it is often convenient
to consider a complex number a + bi as a vector having components a and b in the directions of
the positive z and y axes respectively.

Yy Y
T P, 4
\\
::\\
~
1 ~~_pP
i A
“\ + v // \
2. x ¥ \
i 7
~ \
c/ 2‘
— T
o \
t \
I e 6\22
T = I)l
Fig. 1-7 Fig. 1-8
C(b) Analytically. (6—2{) —(2—51) = 6 —2—21+51 = 4+ 31

()

Graphically. (6—2i)—(2—5i) = 6—2{+(—2+57). We now add 6 —2i and (—2+57) as in
part (a), The result is indicated by OP in Fig. 1-8 above.
Analytically.

{(=8+5i)+(4+2) + 53+ (—4—6{) = (—83+4+5—4)+ Hi+21—3i—61) = 2— 2
Graphically. Represent the numbers to be added by =z, z,, 23,24 respectively. These are shown
graphically in Fig. 1-9. To find the required sum proceed as shown in Fig. 1-10. At the terminal
point of vector z; construct vecter z,. At the terminal point of z, construct vector z;, and at the
terminal point of z; construct vector zy. The required sum, sometimes called the resultant, is
obtained by constructing the vector OF from the initial point of z, to the terminal point of z4, i.e.
OP = z;+2y+23+24 = 2— 24,

ig. 1-9 Fig.1-10
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6. If 2, and z; are two given complex numbers (vec- '

tors) as in Fig. 1-11, construct graphically

& / ’
(@) 321 — 22, (b) 422 +32 '
(a) In Fig. 1-12 below, OA = 3z, is a vector having length z "

3 times vecter z; and the same direction.

OB = —2z; is a vector having length 2 times vector %2
z, and the opposite direction.
Then vector OC = OA + OB = 8z, — 2z,. Fig.1-11 -
c v Yy
‘ 4./-:’;.\,\\
ol D
P va .g\, 4T~ - Q
P o "\\ % >~ A %z, ~ P
.B e g\\ v ,—"l’/’" Vo
~ : ‘:\ ."51"\~ O&zzv"
22, T . . » R
o
Fig.1-12 Fig.1-13

(b) The required vector (complex number) is represented by OP in Fig. 1-13 above.

Prove (a) |z1+22] = |o] + |22, (b)'|z1 +22+ 23] = |7| + |22 + |23, (¢) |71 — 2 =
|z1] — |22 and give a graphical interpretation.
(a) Analytically. Let z, = x,+1iy{, 25 = x5+ ifo. Then we must show that
Vi, + 22 + (yy+92)? = Va2 442 + Vag+42
Squaring both sides, this will be true if
@+ 22+ W +92)? = 22 + ¥+ 2V (@2 D)zl + v2) + 22 + v
ie. if’ 1% + Y Yo = \/(—mm .
" or if (squaring both sides again)
wjas + 2o xayrye + ¥iYE S ofed + 2fud + vizd + ing

N

or 2z %oy Y2 = w3 + y2xl

But this is equivalent to (x;yo—x,y;)?> Z 0 which is true. Reversing the steps, which are
reversible, proves the result.

Graphically. The result follows graphically from the fact that |z, |2,|, |2y + 25| represent the
lengths of the sides of a triangle (see Fig. 1-14) and that the sum of the lengths of two sides of
a triangle is greater than or equal to the length of the third side.

Fig.1-14 Fig.1-15
(b) Analytically. By part (a),
|z tzatz3] = |zt (zatzg)| = o] + |22t 23] = [z + |22] + |zl
Graphically. The result is a consequence of the geometric fact that in a plane a straight line

is the shortest distance between two points O and P (see Fig. 1-15).



