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PREFACE

The main body of this book consists of 106 numbered theorems and a dozen
of examples of models of set theory. A large number of additional results is
given in the exercises, which are scattered throughout the text. Most exer-
cises are provided with an outline of proof in square brackets [ ], and fthe more
difficult ones are indicated by an asterisk. :

I am greatly indebted to all those mathematicians, too. numerous to men-
tion by name, who in their letters, preprints, handwritten notes, lectures,
seminars, and many conversations over the past decade shared with me their
" insight into this exciting subject. ;
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PART 1
Sets

CHAPTER 1
AXIOMATIC SET THEORY

1. AXIOMS OF SET THEORY

Axioms of Zermelo-Fraenkel:
5 :
I. Axiom of Extensionality. If X and Y have the same elements, then X *= Y.

II. Axiom of Pairing. For any a and b there exists a set {a, b} that contains
exactly a and b.

III. Axiom Schema of Separation. If ¢ is a property (with parameter p) then for
any X and p there exists a set Y = {u € X : ¢(u, p)} that contains all those u € X -
that have the property .

IV. Axiom of Union. For any X there exists a set Y = | X, the union of all
elements of X.

V. Axiom of Power Set. For any X there exzsts a set Y = P(X), the set of all
subsets of X. :

VI. Axiom of Infinity. There exists an mﬁmte set.

VII. Axiom Schema of Replacement IfFisa functlon then for any X there
exists a set Y = F[X] = {F(x): x € X}.

VIILI. Axtom of Regularity. Every nonempty set has an e-minimal element.
IX. szom of Choice. Every family of nonempty sets has a choice function.

The theory with axioms I-VIII is ZF, Zennelo—Fraenkel axiomatic set
theory;'ZFC denotes the theory ZF with the axiom of choice.

Why Axiomatic Set Theory? ol

Intuitively, a set is a collection of all elements that satis{y 2 certain given
property. In other words, we might be tempted to postulate the following rule
of formation for sets.

1



2 1. AXIOMATIC SET THEORY

Axiom Schema of Comprehension (false). If ¢ is a property, then there exists a
set Y = {x: ¢(x)}

This principle, however, is false:

Russell’s Paradox. Consider the set S whose elements are all those (and only
those) sets that are not members of themselves: S = {X : X ¢ X}. Question:
Does § belong to S? If S belongs to S, then S is not a member of itself, and so
S ¢ S. On the other hand, 1f S ¢ S, then S belongs to S. In either case, we have a
contradlctlon

Thus we must conclude that
{X:X ¢ X}

is not a set, and we must somewhat revise thie intuitive notion of a set.
The safe way to eliminate paradoxes of this type is to abandon the schema
of comprehension and keep its weak version, the schema of separation:

If @ % a property, then for any X there exists a set Y = {x € X : ¢(x)}.

Once we give up the full comprehension schema, Russell’s paradox is no longer
a threat; moreover, it provides useful information: The set of all sets does not
exist. (Otherwise, apply the separation schema fo the property x ¢ x.)

“In other words, it is the concept of the set of all sets that is paradoxical, not
the idea of comprehension itself.

Réplacing full comprehension by separation presents us with a new prob-
lem. The separation axiomis are too weak to develop, set theory with its usual
operations and constructions. Notably, these axioms are not sufficient to prove
that, e.g., the union X U Y of two sets exists, or to define the notion of a real
number.

Thus we have to add further construction principles that postulate the
existence of sets obtained from other sets by means of certain operations.

The axioms of ZFC are generally accepted as a correct formalization of
those principles that mathematicians apply when dealing with sets.

Language of Set Theory, Formulas’

The axiom schema of separation as formulated above uses the vague notion
of a property. To give the axioms a precise form, we develop axiomatic set
theory in the framework of the first order predicate calculus. Apart from the
equality predicate =, the language of set theory consists of the binary predicate
€, the membership relation.

The formulas of set theory are built up from the atomic formulas

X €y, e
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by means of connectives
eAY, vy, T, ooy, ooy
(conjunction, disjunction, negation, implication, equivalence), and quantifiers
Vxg, 3Ixo

~In practice, we shall use in formulas other symbols, namely defined pred-
icates, operations, and constants, and even use formulas informally; but it will
be tacitly understood that each such formula can be written in a form that only
involves € and = as nonlogical symbols.

Concerning formulas 'with free variables, we adopt the notatiori@i €onven-
tion that all free variables of a formula

(p(ul’ ssley un)

are among u, ... ,u, (possibly some u; are not free, or even do not occur, in ¢).
‘A formula without free variables is called a sentence.

Classes

Although we work in ZFC which, unlike alternative axiomatic set theories,
has only one type of object, namely sets, we introduce the informal notion of a
class. We do this for practical reasons: It is easier to manipulate classes than
formulas.

I @(x, py, ..., p,).is a formula, we call
C={x:9(x, Py, ..., Pa)}

a class. Members of the class C are all those sets x that satisfy @(x, py, ..., p,):

X& Dl Gplippy S, B

We say that C is definable from p,, .  p,;if ¢ has just one free variable, then
the class C is definable.

We shall use boldface capital letters to denote classes. We shall, however,
make departures from this general rule in cases when the standard notation is
different (e.g., V, L, Ord, N, etc.)

Two classes are considered equal if they have the same elements 0

C= (o prap ) D= Yk g )
then C = D iff for all x '

(p(x’ | STEEED pn) 2 (p(x, q1s --+ q,,,)

The universal class, or universe, is the class of all sets:

= {0 =)
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We define inclusion of classes
CcD & Vx(xeC-xeD)
and the following operations on classes: ' :
CnD={x:xeCnaxeD}
CuD={x:xeCvxeD}
C—D={x:xeCAx¢D}
UC={x:xeSforsomeSeC}=(){S:SeC)

Every set can be consxdered a class. If § is a set, consider the formula x € S and
the class

{x:xeS}

That the set S is uniquely detérmined by its elements follows from thc ax10m of
extensionality.
A class that is not a set is a proper class.

Extensionality
If X and Y have the same elements, then X = Y:
& Vuue X >ue Y)»X =Y

The converse, namely, if X = Y, then u € X <>u € Y, is an axiom of predicate
calculus. Thus we have _ :

X=Y o Vu(ueXHue'X)

The axiom expresses the basic idea of a set: A set is determined by its elements.

Pairing
For any a and b there exists a set {a, b} that contains exactly a and b:
Va Vb 3c Vx(x € cox =avx - b)
By Extensionality, the set ¢ is unique, and we can define the pai’r
{a, b} = the unique c such that Vx(x € cox=avx=>b)
The singleton {a} is the set
(@} = {a, a)
Since {a,f = {b, a}, we further define an ordered pair
(a, b)
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so as to satisfy the following condition:
(1.1) (@b)=(c.d) iff a=c and b=d
For the formal definition of an ordered pair, we take
(a, b) = {{a}, {a, b}}
Exercise 1.1. Verify that the definition of an ordered pair satisfies (1.1).
We further define ordered triples, quadruples, etc., as follows:
“ (@ b.¢)= (@ b). )
(a b, c,d)= ((a, b, c), d)

» (al,..., an+l)=((a1, a2y a,,), a,,+1) :
It follows that’two ordered n-tuples (ay, ..., a,) and (by, ..., b,) are equal iff
a1=b1,...,a,,‘=b,,. 4 ?
Separation Schema

Let @(u, p). be a formula. For any X and p, there exists a #et
Y={ueX:op) -
(12) VX Vp 3Y Vu(u e Y il € X A@(u, p))

For each formula ¢(u, p), the formula (1.2) is an axiom (of separation). The set
Y in (1.2) is unique by Extensionality. ; '

" Note that a more general version of separation axioms can be proved using
ordered n-tuples: Let Y/(u, py, ..., p,) be a formula. Then

(1.3) VX Vpy -+ Vp, 3Y Vu(ue Youe X Ay(u, py, ..., P»))
Simply let ¢(u, p) be the formula
| 3p, - 3pup = (P, -, Pa) and Y(u, Py, -, Pa))
and then, given X and p,, ..., p,, let
Y={ueX:0u (P Pa)}

We can give the separation axioms the following form: Consider the class

C = {u: oy, py, ..:, p»)}; then by (1.3)
; VX IY(CnX=Y)

Thus the intersection of a class C with any set is a set; or, we can say even more
informally

a subclass of a set is a set
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One consequence of the separation axioms is that the intersection and the
difference of two sets is a set, and so we can define the operations

XnY={ueX:ueV, X-Y={ueX:iu¢V)
Similarly, it follows that the empty class )
D={u:u+u
is a set—the empty set; this, of course, only under the assumption that at least
one set X exists (because (¥ < X):

(1.4) X (X = X)
‘We have not included (1.4) among the axioms, but it follows from the axiom of
infinity.

Two sets X, Y are called disjoint if X N Y = ).
If C is a nonempty class of sets, we let |

NC=N{X:XeCl={u:ue X for every X € C}

Note that () Cis aset (it is a subset of any X € C). Also, X A Y = N {x, v}
Another consequence of the separation axioms is that the universal class V
- 1s a proper class; otherwise,

S={xeV:x¢x}
would be a set.
Union -
For any X there exists a set Y = U A
(1.5) VX 3IYVu(ue Yo Iz(ze X Auez))
Let us intrbd_uce the abbreviations
(3zeX)o for e(ze X np)
and :
(Vze X) o for Vz(ze X - )
By (1.5), for every X there is a unique set s
Y={u:(FZzeX)uezl}=){z:zeX}=) X

)

the union of X.
Now we can define

X6 wilfim ko) (6 3 o Mol W2 = (X K)o Zs sl

and also . :
: {a, b, ¢} ={a, b} U {c}
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and in general

{al""9an}={al}u sf s {an}

Power Set
For any X there exists a set Y = P(X):
' VX 3Y Vu(ue Yeou < X)
A set U is a subset of X, U E b6
Vz(ze U >z € X)

If U< X and U # X, then U is a proper subset, U < X.
The set of all subsets of X

PX)={u:ucX}
is called the power set of X.

Exercise 1.2. There is no set X such that P( Yo X,
[Use Russell’s paradox]

Using the power set axiom we can define other basic notions of set theory.
The Cartesian product of X and Y is the set of all palrs (x, y) such that
xeXandyeY:

(6) XxY={(x,y):xevXAer}
The notation {(x, y): -} in (1.6) is justified because

{7 9): o(x, p)t = {u: 3x (= (x, y) Aolx, y))}
The product X x Y is a set because
X X PPEX YY)

Fl;rther, we define : :
XxYXxZ=(XxY)xZ
and in general ;
' X %X Xy A e XY %Xy
Thus
Xl %2 X,,={(x1,'.;.,x,,):x, €EX A AX, € X,}

We also let
=X x--xX (ntimes)
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An n-ary relation R is a set of n-tuples. R is a relation over X if R < X". Itis
customary to write R(x,, ..., X,) instead of

v o £
and in case that R is binary, then we also use
xRy .
for (x, y) € R.
~ If R is a binary relation, then the domain of R is the set
dom(R) = {u: v[(u, v) € R]}
and the range of R is the set
ran(R) = {v : 3u[(u, v) € R]}
Note that dom(R) and ran(R) are sets because
dom(R)s | J4J R, ran(R)=lJ R
The field of a relatlon R is the set
field (R) = dom(R) u ran(R).

In general, we call a class R an n-ary relation if all its elements are n-tuples;

‘“in other words, if _
3 R < V" = the class of all n-tuples

where C" (and C x D) is defined in the obvious way. |
A binary relation f is a function if

(x,y)ef and (x,z)€f implies y=z
The unique y such that (x, }) € fis the value of f at x; we use the standard
notation
y=/[(x)
of its variations
fi.xF=> 3, Yo O etc.

for (x, y) e f.
fis a function on X if X = dom(f). If dom(f)\— X", then f is an n-ary

function on X.
fis a function from Xito Y, -

X —->Y

ifdom(f)= X and ran(f) € Y. The set of all functions from X to Y is denoted
by *Y. Note that *Y is a set:

Xy < P(X x Y)
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If Y = ran(f), then f is a function onto Y. A function f is one-to-one if
: f()=1() implies x=y

An n-ary operation over X is a function f: X" — X.
The restriction of a function f toaset X (usually a subset of dom( f))is the
function

f1X={(x,y)ef:xe X}

A function g is an extension of a function f ifg 2f, i.e, dom(f).c dom(g) and
g(x) = £ (x) for all x e dom(f).
We denote the image of X by f by :

SIX1=1{y: (3xe X) [y =/(x)}
and the inverse image by
f-1(X) = {x:f(x) e X}
If f is one-to-one, then f ™! denotes the inverse of f:
Srla)=y il o xm )
These definitions also apply to functions that are classes, i.e., a relation F
such that :
(x,y)eF and (x,z)eF  implies y=z2
For instanee, F[C] denotes the i image of the class C under the function F.
It should be noted that a function is often called a mapping or a correspon-
\dence (and similarly, a set is called a family or a collection).

. An equivalence relation over aset X is a bmary relation = which is reflexive,
symmetrzc and transitive:

x=xforallxe X
x = y implies y =«
x=yand y =z implies x =z

A family of sets is disjoint if any two of its members are disjoint. A partition
of a set X is a disjoint family P of nonempty sets such that

X=\J{Y:YeP}
Let = be an equivalence relation over X. For every x € X, let"
[x]={yreX:y=x}
- (the equivalence class of x). The set
X/= ={x]:x€eX}
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is a partition of X (the quotient of X by =). Conversely, each partition P of X
'deﬁnes an equivalence relation over X:

x=y « (AYeP)[xeYayeY]

If an eQuivalence relation is a class, then its equivalence classes may be
proper classes. In Section 9 we shall introduce a tnck that enables us to handle
equivalence classes as if they were sets. -

Infinity
There exists an infinite set.

To give a precise formulation of the axiom of infinity, we have to define first
the notion of finiteness. The most obvious definition of finiteness uses the
notion of a natural number,,which is as yet undefined. We shall define natural
numbers (as finite ordinals) in Section 2 and give only a quick treatment of
natural numbers-and finiteness in the exercises below.

In principle, it is possible to give a definition of finiteness that does not
mention numbers, but such definitions necessarily look artificial. We give the
most successful version below.

We therefore formulate the axiom of infinity differently:

" 3IS[FeSAa(vxeS)[x U {x} e S]]
We call a set S with the above property inductive. Thus we have:
Axiom of Infinity. There exists an inductive set.

The idea is that an inductive set is infinite. We note that using the replace-
ment schema, one can show that an inductive set exists if there exists an infinite
set (see Section 2).

A set S is T-finite if every nonempty X < P(S) has a c-max1ma1 element,
i.e., u € X such that there is no v € X with u < v.

Fet = - :
N =) {X: X is inductive}

N is the smallest inductive set. Let us use the following notation:
0=g,  1={0} 2={0,1},

IfneNletn+1=nuv {n}. Let us define < (over N) by

' : Pt n<m <« nem

A set T is transitive if x € T implies x < T.

Exercise 1.3. If X is inductive, then the set {x € X : x < X} is inductive. Hence N is
transitive, and for each n, ;

n={meN:m<n}



