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PREFACE

This volume contains the texts of the principal survey papers
presented at ALGORITHMS and ORDER, held at Ottawa, Canada from
June 1 to June 12, 1987. The conference was supported by grants from
the N.A.T.O. Advanced Study Institute programme, the University of
Ottawa, and the Natural Sciences and Engineering Research Council of
Canada. We are grateful for this considerable support.

Over fifty years ago, the Symposium on Lattice Theory, in
Charlottesville, U.S.A., proclaimed the vitality of ordered sets. Only
twenty years later the Symposium on Partially Ordered Sets and Lattice
Theory, held at Monterey, U.S.A., had solved many of the problems that
had been originally posed.

In 1981, the Symposium on Ordered Sets held at Banff, Canada,
continued this tradition. It was marked by a landmark volume
containing twenty-three articles on almost all current topics in the theory
of ordered sets and its applications. Three years after, Graphs and
Orders, also held at Banff, Canada, aimed to document the role of graphs
in the theory of ordered sets and its applications.

Because of its special place in the landscape of the mathematical
sciences order is especially sensitive to new trends and developments.
Today, the most important current in the theory and application of order
springs from theoretical computer science.

Two themes of computer science lead the way.

The first is data structure. Order is common to data structures.
The order may arise according to precedence relations, due either to
technological constraints or even to social choice, on an underlying set of
tasks. How should this order be represented? By a graph? By a
diagram? By an incidence matrix? By geometrical figures? By time
diagrams?

The second theme is optimization. Order is conimon in optimization
problems. Scheduling, sorting and search problems are among the most
common instances of order. Typically an order must be transformed to
another, say a partial extension or a linear extension, which itself may
represent a schedule or a sort.
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It was the aim of ALGORITHMS and ORDER, the conference and
this volume, to survey and monitor these aspects of order. The
algorithmic approach is playing an ever-increasing role and we have good
reason to expect continued growth and applications. The twelve articles
in this volume cover the important ground of algorithms and data
structures in ordered sets. They are based on the principal expository
lectures presented during this two week conference. There were also
freguent special seminars and informal sessions organized spontaneously
and according to individual initiatives. Among these were "problem
sessions”, each occupying the better part of an evening. Many unsolved
problems were recorded and are here transcribed in the "problem
sessions" section. This volume also includes an index.

We are grateful to the many who helped in all aspects of this
meeting. Among them C. Sinclair of the Scientific Affairs Division of
N.A.T.O. was especially helpful in the design of the format for the
scientific sessions. We lament too the passing away, recently, of his
;swedecessor, M. Di Lullo, who assisted us during the earlier Advanced

tudy Institutes in Banff (1981, 1984). Several of the participants, too,
assisted in many ways. I am especially grateful to R. Nowakowski and J.
Urrutia. As ever, Hetje Rival encouraged us, gave enthusiasm and
supplied support - always.

Ottawa, Canada, July 1988 Ivan Rival
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PART 1
GRAPHICAL DATA STRUCTURES






GRAPHICAL DATA STRUCTURES
FOR ORDERED SETS

by

Ivan Rival
Department of Computer Science
The University of Ottawa
Ottawa (Ontario)
CANADA, KN 6N5

THE DIAGRAM

Ordered sets occur widely in computation, in scheduling, in sorting, in social
choice, and even in geography. For some years research on these themes has
focussed first on combinatorial optimization and then on “algorithmics”. Important
advances have been made both at practical and, at theoretical levels. There is little
doubt that the modern mathematical theory of ordered sets owes much of its vitality
to these recent developments. While some of the problems remain exceedingly
difficult, such as the “three-machine scheduling problem”, attention is shifting from
the usual optimization themes to data structures; indeed, there is emerging a need for
efficient data structures to code and store ordered sets. Among these data structures,
graphical ones are coming to play a decisive role, for instance, in problems in which
decisions must be made from among alternatives ranked according to precedence or
preference relations.

There are numerous graphical schemes in common use to represent an ordered
set, each highlighting some order-theoretical property, usually without determining it
entirely. Some are fairly crude (e.g., resembling 'potatoes’ or 'barrels') and are
intended to serve as a blackboard shorthand for an unwritten mathematical polish.
Other schemes (e.g., “time” or 'arrow' diagrams) are specific in delineating
particular order-theoretical properties, for instance in scheduling. Still others (e.g.,
‘block’ diagrams) are contrived as mnemonic aids to represent large ordered sets
which might otherwise remain unexplored.

To summarize there are three recurrent themes that lie at the heart of the study
of graphical data structures for ordered sets: comparability, covering and diagram.
Each graphical scheme uses vertices (little circles in the plane) for the elements of the
ordered set. The comparability graph is an undirected graph in which an edge joins
two vertices a and b precisely if, either a < b or b < a. Actually much is known

I. Rival (ed.), Algorithms and Order, 3-31.
© 1989 by Kluwer Academic Publishers.



The comparability graph of
23, the ordered set of all subsets
of {a,b,c,} ordered by inclusion.

Figure |

about this graphical scheme (cf. Gallai (1967), Golumbic (1980), Kelly (1985),
Mohring (1985)). Loosely speaking the comparability graph has so many edges
that, while it is an undirected graph, the actual orientation (a < b or b < a) can be
determined, at least up to duality. Nevertheless, this abundance of edges is the
source of its practical uselessness. The clutter of edges results in a disordered
jumble; far from serving to aid readability it results in confusion.

What 1s an efficient graphical presentation of an ordered set? The profusicn of
edges in the comparability graph may be avoided by exploiting the 'transitivity' of an
order. For elements a and b in an ordered set P say that a covers b or b is covered
by a, if a > b and, if, for each x in P, a > x > b implies x = b. We also call a an
upper cover of b, and b a lower cover of a. We write 4 >- b, or b -< a. The
covering graph of P is an undirected graph whose vertices are the elements of P and
in which an edge joins two vertices a and b precisely if a covers b or b covers a.

¢ a
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\
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The covering graph of 23

Figure 2



The apparent sparsity of edges in the covering graph makes it a tidier graphical
scheme. Indeed, sometimes, it may even be planar. The trade-off, however, is that
the orientation of P is hardly ever determined from its covering graph alone. And
that, of course, is a serious drawback for, after all, these pictures are meant to be
read. The foremost practical feature is that, for elements a and b in P, we may
readily decide whether or not a < b. Of course, a < b just if there is a covering chain
from a to b, that is, a sequence a = a(), ay, a3, ..., ak = b such that a;, | covers aj, i
=0,1,2,..., k-1. On the other hand, a path from a to b in the covering graph need
not necessarily correspond to a covering chain and it may even be that a is
noncomparable to b.

‘Antisymmetry" of the order relation makes possible an orientation of the
covering graph from which the comparability relations may be readily inferred. To
this end we orient any edge a >- b of the covering graph so that it makes an angle ©
with the horizontal satisfying 0° < © < 180°. This is a diagram of P. Thus, the
elements of P are represented by small circles on the plane so arranged that any

The diagram of 23

Figure 3

circle corresponding to an upper cover a of b is situated higher in the plane than the
circle corresponding to b and is joined to it by a monotonic arc (that is, an arc with
no repeated y-coordinates). Insofar as a diagram of P is a drawing there is, of
course, consi lerable variation possible in its actual rendering. Still, any diagram of
P determines it and it is common practice to identify P with a diagram of P itself.
Despite its apparent simplicity and almost universal usage it is a graphical scheme



A diagram of 23 Another diagram Not a diagram

Figure 4

fraught with subtlety and, frequently, more artifice than method. Indeed, the
diagram is so important and yet so little understood that recent years have witnessed
an unprecedented growth in research devoted to it.

This survey is intended to illustrate several current directions and ideas useful
in the study of graphical data structures for ordered sets.

HOW IS THE DIAGRAM USEFUL?
Here are three preliminary examples to illustrate the usefulness of the diagram.

Example I. Chain Decomposition. What is the least number of planes needed in an
airline fleet to carry out all of a set of trips with specified origin, destination,
departure time and arrival time? Let P stand for the set of trips. Each trip x in P has
a required departure rime d(x) from its origin and a specified arrival time a(x) > d(x)
at its destination. For trips x and y there is a nonzero transition time t(x,y) needed to
prepare for the trip y after the completion of x. The transition time may be due to the
time it takes to prepare for a trip y; for example, instead of waiting inactive to start
another trip at x's destination, it may be more efficient to incur extra cost by flying,
perhaps even without passengers, to another airport, the origin of a trip y. We write

X<y
if, in time,
a(x) + t(x,y) < d(y).
This relation on P is an order provided that the transition times satisfy this triangle
inequality

t(x,y) < t(x,z) + t(z,y).
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The point is that a single plane can carry out a sequence X,y,z, ... of trips only
if the sequence is a chain x<y<z<... in the ordered set of trips. Therefore, the least
number of planes required is precisely the

A chain decomposition A minimum chain decomposition

Figure §

number of disjoint chains in a chain decomposition - the subject of the well-known
Chain Decomposition Theorem according to which this number is actually the
greatest number of pairwise noncomparable elements (cf. Dilworth (1950)). It is the
conventional wisdom that, with respect to the diagram' 'geometry’, chains are rising
paths, perhaps with the fewest number of deviations, thus, as near to vertical as
possible. While one rendering of the diagram may be quite misleading, another may
yield a minimum chain decomposition by inspection.

Example II. Planarity testing. Diagrams to represent the precedence relations in an
organization chart are drawn to be read. It follows, therefore, that the foremost
feature of a diagram of an ordered set P is that, for elements a and b in P, we may
readily decide whether or not a < b. The most obvious graphical criterion is
'planarity’. We say that P is planar if it has a diagram in which none of the lines
corresponding to the covering pairs intersect, except possibly at an endpoint, where
they may meet a small circle corresponding to an element of P. Such a rendering of
P we call a planar representation of it. Planarity seems to enhance the understanding
of the order represent.d by the diagram.



A (nonplanar) diagram of A planar representation of
an ordered set the same ordered set

Figure 6

[t may even be a physical constraint if the diagram stands, say, for a logic circuit
whose wires are not to cross except at contact points.

Most of what is known about planarity is for lattices, that is, ordered sets in
which, for every pair of elements there is supremum and infimum, both belonging
to the ordered set. For instance, any planar ordered set with a top and a bottom must
be a planar lattice (cf. [Kelly and Rival (1975)]). For lattices there is a linear time
planarity-testing algorithm which derives from the reduction of planarity for lattices
[Platt (1976)] to planarity for graphs [Hopcorft and Tarjan (1974)]. Perhaps the
most important facts about planar lattices are these:

(i) the (order) dimension of an ordered set P is preserved by its
‘completion (by cuts)' [Baker, Fishburn and Roberts (1971)]

(if) a lattice has dimension at most two just if it is planar [Kelly and Rival
(1975)]

(iii)there is a full theory and description of planarity for lattices [Kelly and
Rival (1975)]

Together these facts lead to the characterization of all ordered sets of dimension at
most three [Kelly (1975)].

Example IIl. Structural Analysis. There are many other features, especially [Kelly
(1977)] of a structural character, which may be highlighted by a particular diagram,
that is, which may be read from a diagram appropriate to it. Thus, whether P has a
decomposition either as a direct product, or as a linear sum, or a lexicographic sum,
etc., may not be readily apparent just from a full listing of the comparabilities
themselves. An interesting example is the ordered set 24 of all subsets  of a
four-element set ordered by set inclusion. In Figure 7 we have given four, quite
different, diagrams each highlighting a particular structural feature of 24,



The direct product decomposition The direct product dCCO);an
of 24 as2x 23 sition of 24 as 22 x 22

N
A 'symmetric’ diagram Another 'symmetric’ diagram
of 24 of 24,

Figure 7



