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PREFACE

Where are we in the development of applicable methods for the
assessment of Software Reliability ? In the attempt to reply to
this question, an intensive course on Software Reliability
Modelling and Identification was held at Villa Olmo, Como (Italy)
from September 2 to 4, 1987, under the aegis of the Centro di
Cultura Scientifica A.Volta (Como). The lecturers were Paolo
Bolzern, Carlo Ghezzi, Bev Littlewood, John Musa and Riccardo
Scattolini, besides the editor of this volume.

The course, which was attended by field engineers, software
managers and university researchers, was organized by the
Politecnico di Milano, Dipartimento di Elettronica, Centro
Ingegneria dei Sistemi per 1'Elaborazione delle Informazioni of
the Italian Research Council (C.N.R.) and Centro di Teoria dei
Sistemi of the C.N.R..

This volume contains five tutorial papers summarizing the content
of the various lectures. The purpose is to present the basic
models used to forecast the reliability growth during the
software testing process, and discuss the practical applicability
of models in the management of the software development.
Particular attention is paid to the main techniques for the model
identification from data ( parameter estimation, selection of
complexity, validation, etc.). The general approach is to present
good theory for the user, in simple and introductory terms.

The monograph organization is as follows. In Chapter 1,
reliability is placed in the context of other relevant software
qualities. Furthermore, the techniques which have been developed
so far to produce a-priori reliable software (constructive
approach) are introduced. In spite of the increasing interest for
the constructive approach, debugging still takes a significant
percentage of time in the life-cycle of a software product. The
basic reliabilty concepts ( hazard rate, mean time to failure,
etc.) as well as the ideas behind the use of mathematical models
for software reliability growth are the subject of Chapter 2.
Then,two important models are extensively discussed in Chapter 3.



A flexible modelling approach is proposed in Chapter 4.
Precisely, a model which can be used to describe a variety of
different reliability trends is introduced; flexibility is
achieved by allowing a variable fault exposure coefficient, and
resorting to simple decision rules to simplify the model when
advisable. Finally, Chapter 5 deals with the provision of tools
to assist the user for the selection of an appropriate model
amongst the main ones proposed in the literature. These tools are
based on the analysis of the predictive capability of the various
models.

The editor expresses his sincere acknowledgement to the fellow
authors for their most valuable contributions, as well as their
care and patience in the preparation of manuscripts. He is
grateful to Professor Carlo Ghezzi, who originally brought to his
attention the problem of software reliability modelling.

The support of the Ministry of Education (M.P.I.) and the C.N.R.
stategic project Matematica Applicata is acknowledged.

Milano, October 7 1988

Sergio Bittanti
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CHAPTER 1

ON THE ROLE OF SOFTWARE RELIABILITY IN SOFTWARE ENGINEERING

C. Ghezzi, A. Morzenti, M. Pezzé
Dipartimento di Elettronica
Politecnico di Milano
Piazza Leonardo da Vinci 32
20133 Milano, Italy

ABSTRACT

We place reliability in the context of other relevant software
qualities and try to define it rigorously. Then we discuss two
complementary approaches to reliability: the constructive approach,
which tries to produce a-priori reliable software, and the analytic
approach, which tries to measure reliability by inspecting software
a-posteriori, after its development.

The paper reviews two relevant technologies that may provide a
constructive contribution to improving software reliability: formal
specifications and programming languages. Although our emphasis is
on constructive approaches, we briefly review the principles and
techniques of software validation, that can be used to check

software reliability after development.

1. INTRODUCTION

There is much evidence that software is an extremely complex
artifact. We will substantiate this claim here by gquoting two
eminent software scientists: F. P. Brooks and D.L. Parnas. Fred
Brooks says that "software entities are more complex for their size

than perhaps any other human construct" [6]. Dave Parnas [20]




observes that the very nature of complexity stems from the fact that
software systems cannot be analyzed by well-understood mathematical
formalisms, such as the mathematics of continuous functions, as in
most traditional engineering fields. Software systems are discrete
state systems with an enormous number of states and almost no regu-
larity in their state structure. "The mathematical functions that
describe the behavior of these systems are not continuous functions,
and traditional engineering mathematics does not help in their
verification". Both Brooks and Parnas are rather skeptic on the
possibilities of real advances in the field. According to Brooks,
"there 1is no single development, in either technology or in
management technique, that by itself promises even one order-of-
magnitude improvement in productivity, in reliability, in simplici-
ty". Brooks sees no startling breakthroughs, as he believes that
this is "inconsistent with the nature of software". Parnas notices
that "the state of the art in software engineering is significantly
behind that in other areas of engineering. When most engineering
products have been completed, tested, and sold, it is reasonable to
expect that the product design is correct and that it will work
reliably. With software products, it is usual to find that the
software has major "bugs" and does not work reliably for some users.
These problems may persist for several versions and sometimes worsen
as the software is "improved". While most products come with an ex-
press or implied warranty, software products often carry a specific
disclaimer of warranty. The lay public, familiar with only a few
incidents of software failure, may regard them as exceptions caused
by inept programmers. Those of us who are software professionals
know better: the most competent programmers in the world cannot
avoid such problems". He goes on showing that it is not djust a
matter of maturity of the methods and tools used by software
professionals that make software production so critical: it is the
conceptual complexity of software that makes software intrinsically
unreliable.

These quotations from the literature give convincing arguments on
the intrinsic difficulties of the software development process and
the resons why software products are less reliable than other
engineering products. On the other hand, we must be aware that many




real-world critical applications often rely upon software, and their
required quality level farther exceeds what can be assured by
current practices. In addition, reliability is only one of the
desired qualities of software products; other quality factors
include the ergonomics of human interaction with the application, or
the ease of evolution of the application to satisfy changing
requirements, both at the user's level and at the architectural
level. We will discuss more generally the factors affecting the
quality of a sofware product in section 2, in order to place
reliability in the proper context. Reliability and other related
concepts --such as correctness and safety-- will be defined in
section 3.

All of the papers in this volume deal with reliability. However,
this paper is complementary to the others, which deal with the
models that can be used to describe, evaluate, and predict
reliability. Here we concentrate on constructing reliable software.
Although we agree with Fred Brooks that no existing technology can
cause orders-of-magnitude improvements in software quality, we do
believe that some existing technologies can make the quality of the
resulting software products much better than the quality resulting
from conventional practices. Thus, section 3 will review two such
technologies: the specification technology and the programming
language technology. They will be discussed with emphasis on the
reliability of the resulting software.

Although the emphasis of our presentation is on constructive methods
--i.e. methods that help us producing high-quality software-— we
will complete our presentation in section 4 with a quick overview of
the verification and validation technology, which complements
constructive methods very naturally.

This paper is tutorial in nature. However, it is not our goal to
cover all constructive methods and tools that can help us produce
reliable software; rather, we concentrate on the ones we trust more.
Similarly, we will not review all approaches to verification and
validation, but rather we will stress how they should complement

constructive methods to improve the overall quality of software
products.




2. SOFTWARE QUALITIES: SYNTHESIS VS. ANALYSIS

Figure 1 describes the relevant software qualities; it is inspired
by the taxonomies proposed by [7] and [4]. Software qualities listed
in fig. 1 are accompanied by a brief informal description, which
leaves much space open to different interpretations. However, as our
understanding of software becomes deeper and deeper, we may expect
to be able to define them in a precise, formal way. The purpose of
defining the exact meaning of the relevant software qualities is to
use them as a basis of a rational and rigorous process of software
production.

Reliability Does what I want

Efficiency Does it efficiently in
/—— terms of time & space

product

opelﬂotﬂsﬁﬂi_w Easy to use
Integrity Secure

Product quality
Portability I can put it on other
machines
———Reusability I can reuse parts
Product transition/

revisi
klnter; erability I can interface it

with other systems

Maintainability I can remove errors
and adapt it to
requirements
changes

fig. 1: Taxonomy of software qualities



In an ideal design process, one should be able to:

1. define the desired 1level of software gqualities in the
requirements phase;

2. design software using a quality-directed methodology:

3. measure the actual software qualities in the resulting product.
In step 1 one should scan a checklist of software qualities, such as
the one shown in fig.l, and weight each attribute according to the
requirements for the current project. In an ideal world, the
weighting scale would be formally defined since software qualities
would be formally specified. Step 2 assumes that, once the exact
nature of the relevant software qualities is fully understood,
suitable design methodologies are available for adoption, which can
assure that the required quality levels are indeed achieved by the
product being designed. Although this step cannot be done in a fully
mechanical way, even in an ideal world, effective heuristics would
be avalilable to support design, based on previous experience, as it
happens in most traditional and well-established engineering fields.
Since step 2 cannot be accomplished entirely automatically, it is
subject to human Jjudgement and fallibility. Consequently, a final
validation of the product against the goals initially stated in step
1 is still needed; this is done in step 3. Ideally, the measure can
be done rigorously and quantitatively, since software qualities are
defined formally.

This rational ideal process represents a model that can hardly be
approximated by practice in the current state-of-the-art. One basic
reason is that most software qualities are defined in a fuzzy way
and need to be better understood before they can be defined
rigorously. As a consequence, the catalogue of quality-directed
design methods cannot be available and exact measuring procedures
cannot be devised to support the final validation.

This motivates the need for research aiming at a better
understanding of software qualities, in order to be able to formally
define them. Once this is done, one will be able to use them as a
sound basis for the two complementary approaches described by the
above steps 2 and 3. Step 2 embodies what we call the constructive
approach: the required software qualities are achieved through a
quality-directed design process. Step 3 embodies the analytic




appfoach: software qualities are measured a-posteriori in the
validation phase.
The two approaches are clearly complementary. In fact, as we have
seen, the methodology driving the design process can only be a
general guideline; it cannot be seen as an instruction kit .. THus;
much is left to human judgement, or even personal taste. Since
humans are fallible in applying the methodology, a validation phase
is needed to assess the product after development in order to check
whether it matches the prescribed quality levels.
At present, several methodologies have been proposed in the
literature to derive software from its requirements in a systematic
fashion and several tools are offered to support software
development. Unfortunately, there is little consensus on which
methodology offers the best solution to our design problems and
there is no way to evaluate the benefits and trade-offs of different
kinds of tools in a precise and quantitative fashion. Here 1is
another area where the constructive and the analytic approaches can
complement one another. The availability of analytic tools to
evaluate software after development allows the effectiveness of
different methodologies to be assessed precisely in terms of the
quality of the resulting programs. Similarly, the effectiveness of
different tools may be evaluated by measuring the variations in the
quality of the resulting products.
The analytic approach is based on the following concepts:
- metrics: they are a set of precisely definable software
attributes;
~ measures: they are objective and mechanical ways to determine
the values of selected metrics;

- models: they are mathematical laws relating entities of a metric.

Notice that analytic approaches are not used only to assess software
qualities; the models they provide may be used for prediction.
Examples of predictive capabilities can be seen in existing models
for cost estimation [5] and reliability models. For example, cost
models predict the number of man-months needed to develop some
software, based on the estimated number of delivered source
instructions, the type of application, and several other factors



(such as the ability of developers, the type of technology used for
development, etc.). The case of reliability models will not be
treated in this paper: it will be the subject of all remaining
contributions in this volume.

3. RELIABILITY AND RELATED CONCEPTS

In the previous section we mentioned one important aspect of
software quality: how the product conforms to the prescribed
functional specification (i.e., relationship between inputs and
expected outputs). This concept will be investigated further in this
section; in particular, we will define the concepts of correctness,
reliability, security, and safety.

Correctness is a well-understood software quality, that has been
defined in various formal settings. In particular, we use here the
so-called axiomatic definition, which is based on logic.

A program P is specified as a function fp from an input domain In

to an output domain Out

fp : In -> Out
where input data belonging to In and Out are described by
predicates PIn , POut , respectively. P is correct with respect

to its specification if, for every input satisfying PIn , P
terminates in a state satisfying Pout .
For example, a sorting program operating on a nonempty input array a

of length n can be specified as follows:

PIn : n >= 0
POut : a[i] <= a[i+l] forall i with 1 <=i< n and
is_permutation(a, a')

where a’ denotes the value of a before execution of sort and
is permutation 1is a predicate specified elsewhere whose intended
meaning is obvious.

There is an important concept hidden in the above definition: The
specification is assumed "correct" (adequate) by definition, and
correctness is defined as relative to the specification. Also, the

definition of correctness g%ye@;here should be read as "correctness




with respect to the prescribed functional behavior (input/output
relationship)". Although usually this is the intended meaning of the
term in the' literature, one could use the term more generally as
conformance of a given program to some formally specified quality,
such as response time, or storage requirements, or even usability;
if one can provide such formal specification.

Figure 2 outlines the software production process in a sketchy form.
It distinguishes between two main activities: specification and
implementation. Also, it shows that the nature of checking whether
requirements satisfy the intended user requirements is intrinsically
non-mathematical. We can help the process of assessing requirements
by providing appropriate notations that make requirements more
understandable; we can even try to make requirements "executable" or
to use them to derive a prototype.

informal
requirements

specification

v

implementation

l

validation

l

DELIVERY

fig. 2: A rough view of the production process




However, the customer can only assess the requirements by comparing
the intuitive ideas in his or her head with the more or less formal
description provided by the software specialist and by examination
of the prototype's behavior, if there is one. Instead, the
subsequent implementation can be checked for correctness with
respect to the specified requirements. This process will be examined
in more detail in the next section. However, we wish to stress again
that the correctness as defined here does not imply that the
observed functional behavior of a correct software will correspond
to the user's expectations. Obviously, this is the desired overall
goal, but it is useful to split it into the two subgoals:
a) producing good requirements specification; and
b) producing correct software with respect to its
specification.

According to this distinction, one can invest in the direction of
goal a) by providing methods and tools that help capturing,
specifying, and assessing requirements. This is a currently active
research area, which emphasises also the use of graphical interfaces
to facilitate human interaction and the use of rapid prototyping
techniques or diagram animation to inspect the evolution of the
specified system. Goal b) is then facilitated by the (potentially)
formal nature of the process. In fact, both the specification and
the implementation can be viewed as formal notations: transformation
techniques may be used to transform one into the other, and formal
proof systems can be devised to demonstrate their equivalence.

The concept of correctness defined here may be too strong to be
achieved in practice. Absolute adherence of a program to its
specification may be too difficult to achieve and often perhaps also
not mandatory. What really matters in many practical cases is some
sort of probabilistic relaxation of the concept of correctness, in
order to express the fact that the user of the application can
safely rely upon its usage. Here is where reliability comes into
our framework. Formally stated, reliability is the probability
that software will behave correctly --as specified by the
' requirements-- for a given time interval. Again, since correctness
is usually intended with respect to functional behavior, the same
applies to reliability, although in principle a probabilistic
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measure might be applied also to other characteristics of software
quality.

Formally, the adjective "reliable" attached to software has no
precise meaning by itself: a figure must be attached to it to denote
the required (or measured) probability. In practice, however, the
term is used to denote loose concepts, such as "likely absence of
failures", or "long execution histories without failures", etc.,
where failure denotes a visible deviation of the program's behavior
from what is specified.

Often, people use related concepts like safety or security. The term
safety is used to denote the absence of undesirable behavior
causing system hazards. Usually, it deals with requirements other
than those dealing with the primary mission of a system and requires
ensuring that software will execute without resulting in
unacceptable risk. [19] is an excellent tutorial on software safety.
From a formal viewpoint, safety properties are just any set of
properties that one can specify in the requirements; having done
that, one can then try to ensure correctness of the implementation
with respect to this specification. Of course, the properties to
specify when dealing with safety do not simply deal with correct
functional behavior in terms of input/output relationship. Often,
they describe what should never happen while the software is
executing (this is also called a negative requirement); in some
cases, the requirement is stated as an invariant pbroperty of the
system. For example, a safety requirement for an aircraft is that
its height should alway be greater than or equal to zero.
Correctness with respect to an invariant property requires a
modification of the definition given above when dealing with correct
functional behavior specified axiomatically, since every state
entered by the system must satisfy the invariant predicate.
Security is highly related to safety: it has been used mainly to
denote unauthorized access to classified information. [18] shows
that security can be formally specified and implementations can be
proven correct with respect to the specification. Both safety and
security are such that a probabilistic measure of their correctness
(1.e. reliability) does not appear to be interesting: in fact, the
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system's behavior is totally unacceptable as soon as it deviates
from its specification, no matter how often this happens.

3.1 Producing reliable software

We have defined the concept of correctness with respect to a
specification and we have introduced reliability as a relaxation of
correctness that can be defined in probabilistic terms. Lastly, we
have analyzed the related concepts of safety and security and we
have seen that they can be viewed as special cases of the concept of
correctness, where the specified property is not the input/output
functional behavior, but the statement that some hazardous or
unsecure state is never entered during execution.
In this section we will return to the informal and loose usage of
the term reliable and we discuss some existing technologies which,
in our opinion, can improve software reliability significantly. We
discuss formal specifications in section 3.1.1 and programming
languages in section 3.1.2.
Specifications are intrinsically related to our subject matter,
since correctness was defined as a property that is relative to its
specification. In this paper, it will be impossible to review all
relevant approaches to specifications, from informal to formal, from
those based on textual notations to those highly graphical and
interactive. This is presently an active research area and much
attention is devoted to the definition of tools supporting
specification, helping the designer to progress from informal to
progressively more formal specifications [12] [8] [14]. Our
viewpoint is that the goal of specification should be to derive a
rigorous description of the requested behavior: the more critical or
less understood the system under study, the more formal the
description should be.
The benefits of formal specification with respect to software
reliability can be summarized as follows:
(a) they support a rigorous, unambiguous description of the expected
functional behavior;
(b) they support a better understanding of the problem at hand, as
a side-effect of the effort to produce a formal description;




