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Preface

This book is based on three developments in the theory of function spaces.
As the first we wish to mention Besov and Triebel-Lizorkin spaces. These scales

B, ,(R") and F}, ,(R")

allow a unified approach to various types of function spaces which have been
known before like Holder-Zygmund spaces, Sobolev spaces, Slobodeckij spaces
and Bessel-potential spaces. Over the last 60 years these scales have proved their
usefulness, there are hundreds of papers and many books using these scales in var-
ious connections. In a certain sense all these spaces are connected with the usual
Lebesgue spaces L”(R").

The second source we wish to mention is Morrey and Campanato spaces. Since
several years there is an increasing interest in function spaces built on Morrey spaces
and leading to generalizations of Campanato spaces. This interest originates, at least
partly, in some applications in the field of Navier-Stokes equations.

The third ingredient is the so-called Q spaces (Qq spaces). These spaces were
originally defined as spaces of holomorphic functions on the unit disk, which are
geometric in the sense that they transform naturally under conformal mappings.
However, about 10 years ago, M. Essén, S. Janson, L. Peng and J. Xiao extended
these spaces to the n-dimensional Euclidean space R".

The aim of the book consists in giving a unified treatment of all these three types
of spaces, i.e., we will define and investigate the scales

B (R") and Fy3(R")

generalizing the three types of spaces mentioned before. Such projects have been
undertaken by various mathematicians during the last ten years, which have been
investigating Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Let us mention
only the names Kozono, Yamazaki, Mazzucato, El Baraka, Sawano, Tang, Xu and
two of the authors (W.Y. and D.Y.) in this connection. A more detailed history will
be given in the first chapter of the book; see Sect. 1.2.
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Let us further mention the approach of Hedberg and Netrusov [70] to general
spaces of Besov-Triebel-Lizorkin type. There is some overlap with our treatment.
Details will be given in Sect. 4.5.

The real persons Besov, Lizorkin and Triebel never met Morrey or Campanato
(which we learned from personal communications with Professor Besov and Pro-
fessor Triebel). However, we hope at least, the meaning of the title is clear. We shall
develop a theory of spaces of Besov-Triebel-Lizorkin type built on Morrey spaces.

A second aim of the book, just a byproduct of the first, will be a completion of the
theory of the Triebel-Lizorkin spaces F ,(R"). By looking into the series of mono-
graphs written by Triebel over the last 30 years, these spaces play an exceptional
role, in most of the cases they are even not treated. The only exception is the mono-
graph [145], where they are introduced essentially as the dual spaces of F,-‘_q(R")
(with some restrictions in g). Also after Jawerth and Frazier [64] have found a more
appropriate definition, there have been no further contributions developing the the-
ory of these spaces further, e. g., by establishing characterizations by differences or
local oscillations (at least we do not know about).

In Chaps. 4—-6 we shall prove characterizations by differences, local oscillations,
and wavelets as well as assertions on the boundedness of pseudo-differential opera-
tors, nonlinear composition operators and pointwise multipliers.

In this book we only treat unweighted isotropic spaces, with other words, all
directions and all points in R" are of equal value. This means anisotropic and/or
weighted spaces are not treated here. Further, we also do not deal with spaces of gen-
eralized smoothness or smoothness parameters depending on x (variable exponent
spaces). However, some basic properties of corresponding spaces of Besov-Triebel-
Lizorkin type are known in all these situations, we refer to

Anisotropic spaces: [3, 13, 14, 148].

Spaces of dominating mixed smoothness: [4, 128,129, 151].
Weighted spaces: [120, 129].

e Spaces of generalized smoothness: [57].

e Spaces of variable exponent: [47,152].

Further investigations could be based also on a generalization of the underlying
Morrey spaces, we refer to [29-31]. We believe that our methods could be applied
also in these more general situations. But nothing is done at this moment.

The book contains eight chapters. Because of the generality of the spaces we use
Chap. 1 for helping the reader to get an overview in various directions. First of all
we summarize the contents of Chaps. 2-8. Second, we give a list of definitions of
the function spaces which occur in the book. Third, we collect the various known
coincidences of these spaces. Finally, we add a short history. Chapters 2—6 deal with
the definition and basic properties of the spaces B, 5(R") and Fp,;(R"). Chapter 7
is devoted to the study of Besov-Hausdorff and Triebel-Lizorkin-Hausdorff spaces.
Finally, in Chap. 8, parts of the theory of the homogeneous counterparts,

BST(R") and F I(R"),

of B (R") and F, 4 (R") are discussed.
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The book is essentially self-contained. However, sometimes we carry over some
results originally obtained for the homogeneous spaces, mainly from [163-165].
The papers [163—-165] supplement the book in a certain sense. Most of the results
are new in this generality and have been published never before.

Beijing and Jena Wen Yuan
May, 2010 Winfried Sickel
Dachun Yang
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Chapter 1
Introduction

The aim of this chapter is to give the reader a better orientation. For convenience
of the reader we summarize the contents of the following chapters first, then we
continue with some remarks to the history and finally, we collect the definitions of
various function spaces and their coincidence relations.

1.1 A Short Summary of the Book

Chapter 2. For all 5,7 € R, all p € (0,0, and all g € (0,0], we introduce the
inhomogeneous Besov-type spaces B, (R"). Triebel-Lizorkin-type spaces Fp,! s (R")
are defined for the same range of parameters except that p has to be less than infin-
ity. Also corresponding sequence spaces, by, 3 (R") and f} s(R") (see Definitions 2.1
and 2.2 below), are introduced. The spaces B, 3 (R") and Fp 4 (R") are the inhomo-
geneous counterparts of B’;,’,E,(R”) and F,‘fj; (R") introduced earlier in [164, 165]. Via
the Calderdn reproducing formulae we establish the ¢-transform characterization
of these spaces in the sense of Frazier and Jawerth for all admissible values of the
parameters s, T, p, and g (see Theorem 2.1 below). On the one side this generalizes
the classical results for Bj, ,(R") and F; ,(R") in [64, 65] by taking 7 = 0, on the
other hand it also implies that Bj; 3 (R") and Fp; (R") are well-defined. This method
has to be traced to Frazier and Jawerth ([62,64]; see also [65]), and has been further
developed by Bownik [23-25]. We continue by deriving some embedding properties
for different metrics by using the ¢-transform characterization; see Sect. 2.2 below.
Finally, the Fatou property of B}, ,(R") and Fp 4 (R") is established.

Chapter 3. To begin with, in Definition 3.1, we introduce a class of €-almost
diagonal operators on bj; ,(R") and f;, 4(R"). Any €-almost diagonal operator is an
almost diagonal operator in the sense of Frazier and Jawerth [64]. The main result in
the first part of this chapter is given in Theorem 3.1 and concerns the boundedness of
these operators on b“,;},(R”) and f}ﬁ’,f,(R"), respectively. As an application we estab-
lish characterizations by atomic and molecular decompositions (see Theorems 3.2
and 3.3). In case 7 = 0, Theorems 3.1, 3.2 and 3.3 reduce to the well-known char-
acterizations of B‘;,, q(]R" ) and F,'j’ q(R"), for which we refer to [25, 64, 65].

D. Yang et al., Morrey and Campanato Meet Besov, Lizorkin and Triebel, 1
Lecture Notes in Mathematics 2005, DOI 10.1007/978-3-642-14606-0_1,
© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

In the second section of this chapter we shall compare the spaces B;;I,(]R") and
F,fj; (R™) with other approaches to introduce spaces of Besov-Triebel-Lizorkin type
built on Morrey spaces. Let .4/, (R") denote the Besov-Morrey spaces; see (xxv)
in Sect. 1.3. Then our main result consists in

f‘"y"_l/p(R"):J’?"L,AR"), 0<u_<_p§c=o,

in the sense of equivalent quasi-norms and, if 0 < g < oo,

'/’ﬁlu(R") c B:;.L/“_I/p(R")a ‘/‘ﬁlu(RH) £ BL..L/M_I/’)(R")v O<u<p<oo.
Let &, (R") (p # o) denote the Triebel-Lizorkin-Morrey spaces studied in [88,
126, 139]. Then we have

F,':f(;/"—l/p(R”) = g;qu(Rn)’ O<u< p <oo,

with equivalent quasi-norms. In particular, if | <u < p <eo
0,1/u—1 ’ ’ g
Fay """ PR = 635 (R") = LR,

also in the sense of with equivalent norms. Thus, these conclusions combined with
Theorem 2.1 also give the @-transform characterization of the spaces 4., (R") and
&pqu(R"), which seems to be also new.

Chapter 4. Following a well-known but rather long and technical procedure (see,
for example, [109] and [145]), we establish some equivalent characterizations of
the spaces Bj,3(R") and Fp4(R"). Step by step we establish the following chain
of inequalities. First we shall show that Littlewood-Paley characterizations can be
dominated by characterizations by differences. The second step consists in proving
that characterizations by differences can be estimated from above either by charac-
terizations by oscillations or in terms of wavelet coefficients. The third step consists
in estimating oscillations by wavelet coefficients. Finally, as an application of our
atomic characterizations we can close the circle and estimate these expressions in
terms of wavelet coefficients by the Littlewood-Paley characterization. Here we
obtain generalizations of the well-known corresponding results for B), ,(R") and
Fy ,(R") (p < o). They seem to be new for the classes F} ,(R"). A few more inter-
esting localization properties of By, 5 (R") and Fp 4 (R") will given as well. In fact, at
least for small s, membership of a continuous function in Fp’; (R") and B} ,(R") can
be checked by investigating the local behavior of this function in the corresponding
space with 7 =0.

Chapter 5. Based on the smooth atomic and molecular decompositions, de-
rived in Theorems 3.2 and 3.3, we shall prove here the boundedness of exotic
pseudo-differential operators on By, (R") and F, 4(R") (see Theorem 5.1) under
some restrictions for 7. This has several useful consequences. As applications of
Theorem 5.1, we can establish mapping properties of f — d f as well as the so-called
lifting property. Furthermore, we study the boundedness of nonlinear composition
operators Ty : g — fog on spaces A5 (R") NC(R").
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Chapter 6. This chapter is devoted to so-called key theorems; see [ 146, Chap. 4].
Assertions on pointwise multipliers (see Theorem 6.1), on diffeomorphisms (see
Theorem 6.7) and traces (see Theorem 6.8) belong to this group. These theorems
are basic for the definitions of Besov-Triebel-Lizorkin-type spaces on domains. We
finally introduce Besov-Triebel-Lizorkin-type spaces on R, and on bounded C*
domains in R” and discuss a few properties.

Chapter 7. The main aim of this chapter consists in defining and investigat-
ing a class of spaces which have as duals the classes A;,f, R™). These spaces are
introduced by using the Hausdorff capacity. For this reason we call them Besov-
Hausdorff spaces BH,, (R") and Triebel-Lizorkin-Hausdorff spaces FH,, ¢(R"),
respectively. They are the predual spaces of B;,‘f'qf(R”) and F ,;."‘;,T(R”) (see
Theorem 7.3 below). If T = 0, these results reduce to the classical duality asser-
tions for Besov spaces B), ,(R") and Triebel-Lizorkin spaces F, ,(R"). These new
scales BH};, o(R") and F Hy, (R") have many properties in common with the classes
By 5 (R") and Fp;(R"). In particular, we establish the ¢-transform characterization,
characterizations by smooth atomic and molecular decompositions, boundedness
of certain pseudo-differential operators, the lifting property, a pointwise multiplier
and a diffeomorphism theorem and finally assertions on traces. However, the most
important property is the following: lets € R, p =g € (0,0) and 7 € [0, %], then

(B3 5(R")" = BH " (R"),

where (B)},(R") denotes the closure of C(R") N By,(R") in ByL(R") (see
Theorem 7.12 below). By taking s =0, p =2 and 7 = 1/2 we get back the
well-known result

(cmo (Rn))* sy /1] (R”) ,

where cmo(R") is the local CMO(R") space and h'(R") is the local Hardy
space; see Sect.1.3. For suitable indices, the behavior of the scales BH), 7 (R")
and F H}‘;’,Z(R") under real interpolation is investigated; see Theorem 7.14 below.

Chapter 8. In the last chapter we focus on the homogeneous case. The ho-
mogeneous spaces, including homogeneous Besov-type spaces By, (R"), Triebel-
Lizorkin-type spaces F,‘ﬁj;(R") and their preduals, homogeneous Besov-Hausdorff
spaces BH), 7(R") and Triebel-Lizorkin-Hausdorff spaces FH,, 3(R"), were intro-
duced and investigated in [127,164,165,168]. We gather some corresponding results
for these spaces. In particular, we establish their wavelet characterizations (see
Theorem 8.2 below).

1.2 A Piece of History

Here we will give a very rough overview about the history, mentioning some pio-
neering work, but without having the aim to reach completeness.



4 1 Introduction

1.2.1 Besov-Triebel-Lizorkin Spaces

Nikol’skij [108] introduced in 1951 the Nikol’skij-Besov spaces, nowadays denoted
by Bj, .(R"). However, he was mentioning that this was based on earlier work of
Bernstein [10] (p = o) and Zygmund [170] (periodic case, n = 1,1 < p < ). Besov
[11,12] complemented the scale by introducing the third index ¢ in 1959. We also
refer to Taibleson [136-138] for the early investigations of Besov spaces. Around
1970 Lizorkin [91,92] and Triebel [142] started to investigate the scale F,‘f'q(R"),
nowadays named after these two mathematicians. Further, we have to mention the
contributions of Peetre [111, 113, 114], who extended around 1973-1975 the range
of the admissible parameters p and g to values less than one.

Of particular importance for us has been the fundamental paper [64] of Frazier
and Jawerth; see also [62,63] and the monograph [65] of Frazier, Jawerth and Weiss
in this connection. In these papers, the authors describe the Besov and Triebel-
Lizorkin spaces in terms of a fixed countable family of functions with certain
properties, namely, smooth atoms and molecules, which have been a second break-
through in a certain sense (after the Fourier-analytic one in the seventieth), preparing
the nowadays widely used wavelet decompositions. However, these decomposi-
tions were prepared by earlier contributions to the Calderén reproducing formula
in [32,38, 150, 155] and the studies in [41, 115]. We refer to the introduction in [64]
for more details.

The theory is summarized in the monographs [14, 109, 114, 145-149]. A much
more detailed history can be found in [146, 148]; see also [153].

1.2.2 Morrey-Campanato Spaces

In 1938 Morrey [102] introduced the classes .# (R") which are generalizations of
the ordinary Lebesgue spaces. Next we would like to mention the work of John and
Nirenberg, which introduced BMO in 1961 (see [79]). At the beginning of the
sixties, in a series of papers, Campanato introduced and studied the spaces
Z£P*(R"), nowadays named after him; see also Meyers [101]. Peetre [110] gave a
survey on the topic (to which we refer also for more detailed comments to the early
history) and studied the interpolation properties of these classes. Section 2.4 in the
monograph [88] of Kufner, John and Fucik is devoted to the study of Morrey and
Campanato spaces and summarizes the state of the art at 1975.

Function spaces, defined by oscillations, i.e., local approximation by polyno-
mials, were studied by Brudnij [26, 27], II’in [13, 14], Christ [40], Bojarski [15],
DeVore and Sharpley [46], Wallin [153], Seeger [130], and Triebel [146, Sect. 1.7],
to mention only a few. Important for us has been also the general approach of
Hedberg and Netrusov [70] to those function spaces.
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1.2.3 Spaces Built on Morrey-Campanato Spaces

The Besov-Morrey spaces A, (R"), 1 <u < p <eo, | < g < oo, were studied
for the first time by Kozono and Yamazaki [88] in connection with applications
to the Navier-Stokes equation. Also in connection with applications to pde the
homogeneous version J;‘;,,(R"), l <u<p<oo, | <q < oo, were studied by
Mazzucato [97]. The next step has been done by Tang and Xu [139]. They in-
troduced the scale &7, (R") (the Triebel-Lizorkin counterpart of .47, (R")) and
made first investigations for the extended range 0 < u < p < o0, 0 < g < oo, Of
parameters for both types of spaces. Later, Sawano and Tanaka [126] presented var-
ious decompositions including quarkonial, atomic and molecular characterizations
of #,,(R") and ‘;z/,‘,‘q"(R”), where & € {_#,&}. Jia and Wang [78] investigated the
Hardy-Morrey spaces, which are special cases of Triebel-Lizorkin-Morrey spaces.
In [154], Wang obtained the atomic characterization and the trace theorem for
Besov-Morrey and Triebel-Lizorkin-Morrey spaces independently of Sawano and
Tanaka. Recently, Sawano [125] investigated the Sobolev embedding theorem for
Besov-Morrey spaces. Recall that the Besov-Morrey and Triebel-Lizorkin-Morrey
spaces cover many classic function spaces, such as Besov spaces, Triebel-Lizorkin
spaces, Morrey spaces and Sobolev-Morrey spaces. For the Sobolev-Morrey spaces,
we refer to Najafov [103-105].

The Besov-type space By y(R") and its homogeneous version BjG(R"), re-
stricted to the Banach space case, were first introduced by El Baraka in [49-51].
In these papers, El Baraka investigated embeddings as well as Littlewood-Paley
characterizations of Campanato spaces. El Baraka showed that the spaces B}, 3(R")
cover certain Campanato spaces (see [51]).

Triebel-Lizorkin-Morrey spaces &%, (R") (p # ) have been studied in [88, 126,

Pqu
139]. The identity
Fri(R") = 85, (R")

has been proved in [127].
The Besov-type spaces B), 3 (R") and the Triebel-Lizorkin-type spaces Fp s (R")
were introduced in [164, 165].

1.2.4 Q Spaces

The history of Qq spaces (or simply Q spaces) started in 1995 with a paper by
Aulaskari, Xiao and Zhao [7]. Originally they were defined as spaces of holomor-
phic functions on the unit disk, which are geometric in the sense that they transform
naturally under conformal mappings (see [7, 160]). Following earlier contributions
of Essén and Xiao [55] and Janson [76] on the boundary values of these functions
on the unit circle, Essén, Janson, Peng and Xiao [54] extended these spaces to the
n-dimensional Euclidean space R". There is a rapidly increasing literature devoted
to this subject, we refer to [7,44,45,54,55,76, 157-162, 169].
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Most recently, in [164, 165], two of the authors (W.Y and D.Y) have introduced
the scales of homogeneous Besov-Triebel-Lizorkin-type spaces Bjy(R") and
Fpa(R") (p # ), which generalize the homogeneous Besov-Triebel-Lizorkin
spaces (B';,’ q(R"), FI; q(R")) and Q spaces simultaneously, and hence answered an
open question posed by Dafni and Xiao in [44] concerning the relation of these

spaces. In fact, it holds
o
rs° " (R") = Q0u(R")
ifa € (0,1) (n>2).
Recently, Xiao [161], Li and Zhai [90] applied certain special cases of B, ,(R")
and F;;Z(R"), including the Q spaces, to study the Navier-Stokes equation.

1.3 A Collection of the Function Spaces Appearing in the Book

As a service for the reader and also for having convenient references inside the
book we give a list of definitions of the spaces of functions (distributions) showing
up in this book. Sometimes a few comments will be added. We picked up this idea
from [145, Sect.2.2.2] and [153] and a part of our list is just a copy of the list given
in [145].

As a general rule within this book we state that all spaces consist of complex-
valued functions. We shall divide our collection into three groups:

e Function spaces defined by derivatives and differences.

e Function spaces defined by mean values and oscillations (local polynomial
approximations).

o Function spaces defined by Fourier analytic tools.

The first item contains the classical approaches to define smoothness. In the sec-
ond item we recall the definitions of spaces related to Morrey-Campanato spaces.
Finally, in the third item we define spaces by Fourier analytic tools, in most of the
cases by using a smooth dyadic resolution of unity.

1.3.1 Function Spaces Defined by Derivatives and Differences

(i) Lebesgue spaces. Let p € (0,0). By L”(R") we denote the space of all mea-
surable functions f such that

1/p
ANl r(rry = (/R" If(x)lf’dx> < oo,

In case p = oo the space L*(R") is the collection of all measurable functions
f such that

| f1l =gy = esssup |f(x)| < oo.
xeR?
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Of a certain importance for the book are the following modified Lebesgue-
type spaces. Let T € [0,o0) and p € (0,o]. Let LY(R") be the collection of
functions f € L (R") such that

1 1/p
1f1l 2 (mey = sup 12 (/P|f(x)|"dx> ;

where the supremum is taken over all dyadic cubes P with side length
I(P)>1.
(ii) The space C(R") consists of all uniformly continuous functions f such that

I fllc@ny = sup |f(x)] <ee.
xeR”

(iii) Let m € N. The space C™(R") consists of all functions f € C(R"), having all
classical derivatives % f € C(R") up to order |¢t| < m and such that

Ifllemmny = 2, 19% fllcn < -
lot|<m
We put CO(R") = C(R").
(iv) Holder spaces. Let m € Z; and s € (m,m + 1). Then C*(R") denotes the
collection of all functions f € C"(R") such that

9%f(x) — %I _

be—ylr="

I flles@n = 1 flem@mny + Y, sup '

|at|=m X7y

(v) Lipschitz spaces. Let s € (0, 1]. The Lipschitz space Lips(R") consists of all
functions f € C(R") such that

— o ) = FO)I
”f”Lips(R") = il:éf\’ W < oo,

(vi) Zygmund spaces. Let m € N. The Zygmund space 2™ (R") consists of all
functions f € C"~!(R") such that

£l zmway = I fllem-1(mn)
o 2h) — 2 9% a
P — [0%f(x+2h) —29%f(x+h)+ 3% f(x)]| o
|at|=m h£0 xRN |A|

In case of s > 0, s & N, we use the convention Z*(R") = C*(R").

(vii) Sobolev spaces. Let p € (1,%0) and m € N. Then W)'(R") is the collection of
all functions f € LP(IR") such that the distributional derivatives 9% f are func-
tions belonging to LP(R") for all &, |a| < m. We equip this set with the norm

I lwpeny = 3, 10%fllLr(rn)-

lot|<m

As usual, we define W) (R") = LP(R").
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(viii) Slobodeckij spaces. Let p € [1,o0) and let s € (0,e0) be not an integer. Let
m € Z, such that s € (m,m+ 1). Then W;(R") consists of all functions
f € W)'(R") such that

_ 0/ (x) =9I, \'”7
vy = Wrtwgor+ 3 ([, LSO gy} <o

|a|=m

(ix) Besov spaces (classical variant). Let s € (0,e0) and p, g € [1,0|. Let M € N.
Then, if s € [M — 1,M), the space B, ,(R") is the collection of all functions
f € LP(R") satisfying

dh \ '
1 lsptier = e + (1184 oy ) <

Besov spaces can be defined in various ways; see in particular item (xx)
below. In Chaps.2—4 we shall prove the equivalence of some of these ap-
proaches in a much more general context.

1.3.2 Function Spaces Defined by Mean Values and Oscillations

Now we turn to a group of spaces which are related to Morrey-Campanato spaces.

(x) Functions of bounded mean oscillations. The space BMO (R") is the set of
locally integrable functions f on R” such that

. 1
Illswose) = sup 7 /Q 1F() — fol dx < oo,

where the supremum is taken on all cubes Q with sides parallel to the coordi-

nate axes and where
fo= 157 [ 1)
°= ol

denotes the mean value of the function f on Q.
(xi) According to Sarason [122], a function f of BMO (R") which satisfies the
limiting condition

1
lim (é‘ffa al lf(X)—fQIdx) ~0

is said to be of vanishing mean oscillation. The subspace of BMO (R")
consisting of the functions of vanishing mean oscillation is denoted by
VMO (R"). We note that the space VMO (R") considered by Coifman and
Weiss [42] is different from that considered by Sarason, and it coincides with
our CMO (R"); see the next item.



