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JPreface

This book is divided into two parts.

The first one is purely algebraic. Its: objective is the classification of
quadratic forms over the field of rational numbers (Hasse-Minkowski
theorem). It is achieved in Chapter IV. The first three chapters contain some
preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.
Chapter V applies. the preceding results to integral quadratic forms of
discriminant # 1. These forms occur in various questions: modular functions,
differential topology, finite groups.

The second part (Chapters VI and VII) uses “analytic’’ methods (holomor-
phic functions). Chapter VI gives the proof of the “theorem on arithmetic
progressions” due to Dirichlet; this theorem is used at a critical point in the
first part (Chapter III, no. 2.2). Chapter VII deals with modular forms,
and in particular, with theta functions. Some of the quadratic forms of
Chapter V reappear here.

The two parts correspond to lectures given in 1962 and 1964 to second -
year students at the Ecole Normale Supérieure. A redaction of these lectures
in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-1V)
and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful.to
me; I extend here my gratitude to their authors.

J.-P. Serre
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Chapter 1
Finite Fields

All fields considered below are supposed commutative.v

§1. Generalities
1.1. Finite fields

Let K be a field. The image of Z in K is an integral domain, hence
isomorphic to Z or to Z/pZ, where p is prime; its field of fractions is iso-
morphic to Q or to Z/pZ = F,. In the first cas¢, one says that K is of
characteristic zero; in the second case, that K is of characteristic p. -

The characteristic of K is denoted by char(K). If char(K) = p £+ 0, pis
also the smallest integer n>0 such that nl =0.

Lemma,.—If char(K) = p, the map o: x +» x? is an isomorphism of K onto
one of its subfields K®.

We have o(xy) = o(x)o(y). Moreover, the binomial coefficient (z) is
congruent to 0 (mod p) if 0<k<p. From this it follows that :

o(x+y) = o(x)+0(y); &
hence ¢ is a homomorphism. Furthermore, o is clearly injective.

Theorem 1.—i) The characteristic of a finite field K is a prime number
P * 0; if f = [K:F,), the number of elements of K isq = p’.

ii) Let p be a prime riumber and let ¢ = p’(f = 1) be a power of p. Let
Q be an algebraically closed field of characteristic p. There exists a unique
subfield ¥, of Q which has q elements. It ts the set of roots of the polynomial
Xi- X,

iii) Al finite fields with q = p’ elements are isomorphic to F,.

If K is finite, it does not contain the field Q. Hence its characteristic is a

prime number p. If f is the degree of the extension K/F,, it is clear that
Card(K) = p/, and i) follows.
" On the other hand, if Q is algebraically closed of characteristic p, the
above lemma- shows that the map x+» x? (where ¢ = p/, f2 1) is an
automorphism of Q; indeed, this map is the f— th iterate of the automorphism
o: x — xP (note that o is surjective since Q is algebraically closed). Therefore,
the elements x € Q invariant by x — x? form a subfield F, of Q. The derivative
of the polynomial X?— X is ~

gX¥ 1 =ppfmIxX -1 = ]
3 -



4 Finite fields
and is not zero. This implies (since Q is algebraically closed) that X?—X
has g distinct roots, hence Card(F,) = ¢. Conversely, if K is a subfield of Q
with g elements, the multiplicative group K* of nonzero elements in K has
g—1 elements. Then x*~* = 1 if xe K* and x? = x if x € K. This proves
that X is contained in F,. Since Card(K) Card(F,) we have’K F, whlch
completes the proof of u)

Assertion iii) follows from u) and from the fact that all ﬁelds with p/
elements can be embedded in Q since Q is algebraically closed.

-1.2. The multiplicative group of a finite field

Let p be a prime number, let f be an integer 21, and let ¢ = p’.

. Theorem 2.—The multiplicative group ¥ of a finite field ¥, is cyclic of
order q—1.

Proof. If d is an integer 2 1, recall that ¢(d) denotes the Euler ¢-function,
i.e. the number of mtcgers x with 1 £ x < d which are prime to d (in other
words, whose image in Z/dZ is a generator of this group). It is clear that the
numbet of generators of a cyclic group of order d is $(d).

Lemma L.—If n is an integer 21, then n = 2 9S(a‘) (Recall that the nota-
“tion d|n means that d divides n).

If d divides n, let C; be the unique subgroup of Z/nZ of order d, and

let @, be the set of generators of C,. Since all elements of Z/nZ generate

one of the C,, the group Z/nZ is the disjoint union of the ®, and we have

= Card(Z/nZ) = ‘g Card(®,) = g;:ﬁ(d).

Lemma 2.—Let H be a finite group of order n. Suppose that, for all divisors
d of n, the set of x € H such that x = 1 has at most d elements. Then H is
cyclic. . :
Let d be a divisor of n. If there exists x € H of order d, the subgroup
(x) = {1, x,...,x* '} generated by x is cyclic of order d; in view of the .
hypothesis, all elements y-e H such that y? = 1 belong to (x). In particular,-
all elements of H of order 4 are generators of (x) and these are in number
¢(d). Hence, the number of elements of H of order d is 0 or ¢(d). If it were
zero for a value of d, the formula » = dlZ:.'cﬁ(d) would show that the number

of elements in H is <n, contrary to hypothesis. In parfiéular, there exists an
element x € H of order n and H coincides with the cyclic group (x).

Theorem 2 follows fromr lemma 2 applied fo H=F; and n=g-1;
it is indeed obvious that the equation x? = 1, whlch has degree d, has at
most d solutlons in F,.

- Remark. The above proof shows more generally that ali finite subgroups .
of the. multiplicdtive group of a ﬁeld are cyclic.



Equations over a finite field s

'§2. Eqnauons over g finite field
Let q be a power of a prime number p, and let K be a field with g elements.

2.1. Power sums

Lemma.—Let u be an integer >0. IhesumS(X“) Zx zsequalto -1

ifu is =1 and divisible by g=1; it is equal toO othermse

(Wcagreethatx—llfu—Oeventfx=0) T

If u = 0, all the terms of the sum are equal ta I; hence S(X") q.l\:- 0
- because K is of characteristic p. '

If uis 21 and divisible by ¢—1, we haVeO" : 0.and x* = 1 xfx*O-
'Hence S(X*) = (q-—l)l = -1,

Finally, if u is-=1 and not dmslble by q-,i:, .,the fact that K* is cycﬁc
of order g — 1(th. 2) shows that there exists y ¢ X# such that y* + 1. Omhas

- S@ _x§°fx Bxezx:ty'x = y&s(m

ind (1—y9S(X*) = 0 which implies that S(X*) = 0. |
. (Variant—Use the fact that, .nfyvzsz is prime 40 p, the sum of the d— gk
mu nf ity -is zero.) e
| 2.2, Cluvalley theorem

.

. Theowem -3 (Chevalley— wm).—-yt f,ex[x,,.. , XJ. be poly-
: ﬁomhlsinnuariablessuchtlmtdegﬁ, <. n,andlet Vbethesetofthezrcammon
teminK" ‘One has "

Card(V) =0 (modp) .
Put P = l_[(l— ra=1) 'and let x e K If x'e ¥ all the f,(x) are zero and

P(x) = 1; if x¢ ¥, one of the £(x) i is nonzero apd f,(x)'"' = I, hence
- P(x) = 0. Thus P is the characteristic ﬁmctum of ¥. If, for every polynomml
-j;weputS(f)—Zf(x),wehave '

Card(V) = S(P) (mod P)

and we are reduced to shoﬂmg that. S(P) = 0.

Now the hypothesis deg f, < n jmplies that deg P < n(g—1); thus P
is a linear combination of monomials X* = X¥ ... X* with Zu, < n(g—1).
" It-suffices to prove that, for such a monomial X"; we have S(X") = 0 and
this follows from the lemma sinde’at least one u, is <g—1I.

-.Corollary 1.—If deg f < n and if rllg J+ have no constant term, then 1he Ja
have a nontrivial common zero. ’

Indeed; if ¥ were reduced to {0},.Card(¥) would not be divisible by p.
Corollary 1 applm notably when’ t%eﬁ. are homogeneous ln partlcular



6 . Finite fields

Corollary 2.—All quadratic forms in at least 3 variables over K have a
non triviaj zero. '

{In geometric language every conic over a fmlte ﬁeld has a rational
point.)

§3. Quadratic reciprocity law
3.1. Squares in F,

Let g be a power of a prime number p.

Theorem 4.—(a) If p = 2, then all elements of F, are squares.
(b) If p # 2, then the squares of ¥ form a subgroup of index 2 in F?;

q b4
this subgroup is the kernel of the homomorphmn x - X9V ywith values

in {+1}.
(In other terms, one has an exact sequence:

1->F?>Fp > {t1}>1)

Case (a) follows from the fact that x> x? is ‘an automorphism of F,.
In case (b), let Q be an algebraic. closure of F,; if x € Fy, let y€Q be
such that y*> = x. We have: -

Y= x@ 2 = yisincext ! = 1.

For x to be a square in F it is necessary and sufficient that y bclongs toF,
i.e. y*' = 1. Hence F"‘2 is the kernel of x — x@~ 12, Moreover, since F‘
is cyclic of order g—1, the index of F"2 is equal to 2.

3.2. Legendre symbol (elementary case)

Definition.—Let p be a prime number +2, and let x < F,‘,‘ "The Legendre
symbol of x, denoted by (i), is the integer x??~"/? = 41,

x 0
It is convenient to extend ( ;) to all of F, by pntting (’_,) = 0. Moreover,
. . . X x'
if x € Z has for image x’ € F,, one writes (—) = (_)
We have (J—;) (g) = (%) The Legendre symbol is a “character” (cf.
chap. VI, §1). As seen in theorem 4, (;) = 1 is equivalent to x e F}?; if

x € F} has y as a'square root inan algebraic closure of F,, then (p) yoL



Quadratic reciprocity law ' 7
Computation of ( ) forx=1,-1,2:

If nis an odd mteger, let #(n) and w(n) be the elements of Z/2Z defined by:
oy = =1 0ifn = 1 (mod 4)
= ——(mod2) =
oty = "= (mod ) {1 e o
2_ ol _ .
win) ==L (mod 2) = {0ifn = £1(mod¥)
8- lifn = +5(mod 8)

[The function e is a homomorphism of the multiplicative group (Z/4Z)*
onto Z/2Z; similarly,  is a homomorphism of (Z/8Z)* onto Z/2Z]

Theorem 5.—The following formulas hold:

~ (1) _

o)1

ii) (___.l_) = (_l)t(p)
p

i) (2) = (—1y=®

i) (p) (—D™P,

Only the last deserves a proof. If « denotes a primitive 8th root of umty
in an algebmc closur¢ © of F,, the element 'y = a+a~"' verifies y? = 2
(from «* = —1 it follows that «?+a~2 = 0). We have

y=af+a"F

If p= +1 (mod 8), this implies y? = y, thus (1_7 =y l=1Ifp= +

(%3

(mod 8), one finds y* = a®+a™% = —(a+a~') = —y. (This again follows
from «* = ~1.) We deduce from this that y"‘l = —1, whence iii) follows.

Remark. Theorem 5 can be expressed in the following way:
—1 is a square (mod p) if and only if p = 1 (mod 4).
2 is a square (mod p) if and only if p = +1 (mod 8).

3.3 Quadratic reciprocity law
Let / and p be two distinct prime numbers different from 2.
Theorem 6 (Gauss).— (;—,) = (‘;) (=1,

Let Q be an algebraic closure of F,, and let weQ be a primitive /-th
root of unity. If x e F, the element w* is well defined since w' = 1. Thus
we are able to form the “Gauss sum™:

' x
= ). [Z}w"
r=Z (1)
Lemma 1.—y* = (—1)*"L "
(By abuse of notation / denotes also the image of / in the field F,.)



- We have

L2 Xz +z _ - "(“;i)
#=2(7)7 - 53(7)
Nowift4+0: = SR
( tu— 1)\ Y il Y 2 S 2 YRS 1—u™!
(“7)-(7)(57) = (55),
| (- = T Cwr,
wely

'C,'="§ (1_,;,—1).,

(;) = —1; otherwise s = 1—ut~" runs over F,—{1},

and

where

fu=0,C, =’,¥-
€]

!

-5)-0)--0)-

since in F} there are as many squares as non squam Hence 2‘. C..w

I—— 1— 2 w" = [, which proves the lemma.
ueF

and we have

P
, l
Since Q is of characteristic p, we have

5B 0
" hencey*! = (f)

Theorem 6 is now immediate. Indeed, by lemmas { and 2,

(E2) - 2)
] l]-

and the second part of th. S proves that

((—yl)'("), = (1) -,

Lemma 2.——y" 1=

P

- Translation.—Write IRp if I is a square (mod p) (that is to say, if /is a
“‘quadratic residue” modulo p) and INp otherwise. Theorem 6 means that

IRp<>pRI ifp or =1 (mod4)
IRp <>pNI ifpandi= —1(mod4).



Appendix ' o | 9
Remark. Theorem 6 can be used to compute Legendre symbols by

. successive reductions. Thus:

®®®w%&@W“

. Another proof of the quadratic reciprocity law (G. EISENSTEIN, J. Crelle,
29, 1845, pp. 177-184.)

i) Gauss Lemma

Let p be a prime number #2, and let S be a subset of F; such that Fyis
the disjoint union of S and — S. In the following we take S = }

IfseS and ae F"‘, we write as in the form as = e,(a)s with e,(a) = 11
.and s,eS.

Lemma (Ganss) —(p) H e,(a)

Remark first that, if s and s’ are two distinct elements of S, then s, # s,
(for otherwise s = +s’ contrary to the choice of S). This shows that s s,
is a bijection of S onto 1tself Muluplymg the equalities as = e,(a)s,, we

" obtain

a2 T s = (H.es(a)) [[s = (H es(a)) [1s
. . seS seS "] seS © " \seS SeS
hence :
P2 - ge'(a);
this proves the lemma since (g) =q? V2 inF,
Example.—Take a = 2and S = {l, e ,I%'—l} We have ¢,2) = 1 if

25 £ 1%—-1— and e (2) = —1 otherwise. From this we get (2) =(-1)®
p

where n(p) is. thc number of integers s such that 2 41 <s<?”- 2 .Kpis

of the form 1+ 4k (resp. 3+4k), then n(p) = k+ 1. Thus we recover the fact
that (2) = lifp= +1(mod 8)arid(z) = —1ifp = +5(mod 8), cf. th. 5.
\P ‘ P o ’ '

i) A trigonometric lemma ’

Lemma.—Let m be a positive odd integer. One has



10 ' A Finite ields

sin mx n 2 2mf
e = (—g)- 2 H sin? x—sin? =2 ) .
sm X 15js(m—-1)/2 m

This is elementary (for instance, prove first that sin (mx)/sin (x) is a poly-
nomial of degree (m—1)/2 in sin? x, then remark that this polynomial has

for roots the sin? %’-r-j with 1 £j S (m—1)/2; the factor (—4)™ V2 js
m

obtained by comparing coefficients of ¢/™~V* on both bsides).
iii) Proof of the quadratic reciprocity law

Let / and p be two distinct prime numbers different from 2. Let
S={1,...,(p-12}

as above. From Gauss’ lemma, we get

(3)-ne0

Now the equality Is = e/(/)s, shows that
sin 27 Is = eIy sin 2" .
p ' p

Multiplying these equalities, and taking into éqcount that s+ s, is a bi-
jection, we get: ’
l

. . 2nls | . 2113
(1—,) ;l;l ,(I)—-l;!sm~p—/s .

By applying the trigonometric lemma with m = I, we can rewrite this:

21rt
—4u-n/2 sin2 <73 27s n?
(P) u =9 'g( p 1)
=(—4)("”("'”"‘ H '(sinzgfig—siniz—;"),

3¢S, teT, ¥4

where T denotes the set of integers between 1 and (/—1)/2. Permuting ifie
roles of / and p, we obtain similarly:

D _ (‘,_1)(‘,_1)/4.‘ . ain2 2nt .., 2 2ms
~1=(~4 sin® — — sin° —|.
(1) (=4 sesl._!er( ) p

The factors giving (L and G) are identical up to si'gn. Since there are
P _ :
(p—1) (I-1)/4 of these, we find: '

(!) - (E) (_1)(,-1)(:-1'))4.
p ! o

This is the quadratic reciprocity law, cf. th. 6.



Chapter 11
p-Adic Fields
_ In this chapter p denotes a prime number. :

§1. The ring Z, and the field Q,
1.1. Definitions »

For every n 2 1, let A, = Z[p"Z; it is the ring of classes of integers
(mod p"). An’ element of A, defines in an obvious way an element of 4, ;;
we thus obtain a homomorphism

¢a A - An."l’

which is surjectnve and whose kernel is p" "' 4,.
The sequence o
Ay Ay > ... Ay > Ay

forms a ““projective system” indexed by the integers 1.

Definition 1.—The ring of p-adic integers Z, is the projective limit of the
system (A,, ,) defined above.

By deﬁnmon, an clement of Z, = hm (A,, ¢,) is a sequence x =
ooy XpyoorsXy) With x, € 4, and ¢,,(x,,) = X,., if n 2 2. Addition and
multiplication in Z,, are defined ‘“‘coordinate by coordinate”. In other words,
Z, is a subring of the product“glA,,. If we give-A4, the discrete topology and

IT 4, the product topology, the ring Z, inherits a topology which turns it
into a compact space (since it is closed in a product of compact spaces).

1.2. Properties of Z, ) .
Let e, . Z, — A, be the function which associates to.a p-adic integer x its
n-th component x,.

Proposition 1. —The. sequence 0 -7, L z, -l A, =0 isan exact sequenc,e
of abelian groups.
(Thus.we can identify Z,/p"Z, with 4, = Z[p"Z.)
~ Multiplication by p (hence also by p") is injective in Z,; mdeed, if
x = (x,) is a p-adic integer such that px = 0, we have px,., = 0 for all n,
and x,, , is of the form p"y,., With y,4, € A,+,: since x, = ¢ 4 1(X4 1), We
see that x, is also divisible by p”, hence, is zero. R

1



