~ A CONCRETE APPROACH

. TOABSTRACT
ALGEBRA

W W, Sawyer



A Concrete Approach
to Abstract
Algebra

W. W. Sawyer

NEW YORK



The writing of this book, which was prepared while the
author was teaching at the University of Illinois, as a
member of the Academic Year Institute, 1957-1958, was
supported in part by a grant from the National Science
Foundation.

Copyright © 1959 by W. H. Freeman and Com-
pany.

All rights reserved under Pan’ American and
International Copyright Conventions.

Published in Canada by General Publishing Com-
pany, Ltd.,, 30 Lesmill Road, Don Mills, Toronto,
Ontario. .

Published in the United Kingdom by Constable
and Company, Ltd., 10 Orange Street, London
WC2H 7EG.

This Dover edition, first published in 1978, is an
unabridged republication of the work originally
published in 1959. It is reprinted by special arrange-
ment with the original publisher, W. H. Freeman
and Company, 660 Market Street, San Francisco,
California 94104.

International Standard Book Number: 0-486-63647-X
Library of Congress Catalog Card Number: 78-52146

Manufactured in the United States of America
Dover Publications, Inc.
180 Varick Street
New York, N.Y. 10014



10

11

Contents

Introduction

The Viewpoint of Abstract Algebra
Arithmetics and Polynomials

Finite Arithmetics

An Analogy Between Integers and Polynomials
An Application of the Analogy
Extending Fields

Linear Dependence and Vector Spaces
Algebraic Calculations with Vectors
Vectors Over a Field

Fields Regarded as Vector Spaces
Trisection of an Angle

Answers to Exercises

Index

26
71
83
94
115
131
157
167
185
208
223

233



Introduction

The Aim of This Book
and How to Read It

AT THE PRESENT time there is a widespread desire,
particularly among high school teachers and engineers,
to know more about ‘“modern mathematics.” Institutes
are provided to meet this desire, and this book was
originally written for, and used by, such an institute.
The chapters of this book were handed out as mimeo-
graphed notes to the students. There were no “lectures’;
I did not in the classroom try to expound the same mate-
rial again. These chapters were the ‘“lectures.” In the
classroom we simply argued about this material. Ques-
tions were asked, obscure points were clarified.

In planning such a course, a professor must make a
choice. His aim may be to produce a perfect mathemat-
ical work of art, having every axiom stated, every con-
clusion drawn with flawless logic, the whole syllabus
covered. This sounds excellent, but in practice the result
is often that the class does not have the faintest idea of
what is going on. Certain axioms are stated. How are
these axioms chosen? Why do we consider these axioms
rather than others? What is the subject about? What is
its purpose? If these questions are left unanswered, stu-
dents feel frustrated. Even though they follow every
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individual deduction, they cannot think effectively about
the subject. The framework is lacking; students do not
know where the subject fits in, and this has a paralyzing
effect on the mind.

On the other hand, the professor may choose familiar
topics as a starting point. The students collect material,
work problems, observe regularities, frame hypotheses,
discover and prove theorems for themselves. The work
may not proceed so quickly; all topics may not be
covered; the final outline may be jagged. But the student
knows what he is doing and where he is going; he is
secure in his mastery of the subject, strengthened in con-
fidence of himself. He has had the experience of discover-
ing mathematics. He no longer thinks of mathematics
as static dogma learned by rote. He sees mathematics
as something growing and developing, mathematical
concepts as something continually revised and enriched
in the light of new knowledge. The course may have cov-
ered a very limited region, but it should leave the student
ready to explore further on his own.

This second approach, proceeding from the familiar
to the unfamiliar, is the method used in this book.
Wherever possible, I have tried to show how modern
higher algebra grows out of traditional elementary alge-
bra. Even so, you may for a time experience some feeling
of strangeness. This sense of strangeness will pass; there
is nothing you can do about it; we all experience such
feelings whenever we begin a new branch of mathemat-
ics. Nor is it surprising that such strangeness should be
felt. The traditional high school syllabus—algebra, ge-
ometry, trigonometry—contains little or nothing dis-
covered since the year 1650 A.p. Even if we bring in
calculus and differential equations, the date 1750 A.D.
covers most of that. Modern higher algebra was de-
veloped round about the years 1900 to 1930 A.p. Anyone
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who tries to learn modern algebra on the basis of tradi-
tional algebra faces some of the difficulties that Rip Van
Winkle would have experienced, had his awakening
been delayed until the twentieth century. Rip would
only overcome that sense of strangeness by riding around
in airplanes until he was quite blasé about the whole
business.

Some comments on the plan of the book may be
helpful. Chapter 1 is introductory and will not, I hope,
prove difficult reading. Chapter 2 is rather a long one.
In a book for professional mathematicians, the whole
content of this chapter would fill only a few lines. I
tried to spell out in detail just what those few lines would
convey to a mathematician. Chapter 2 was the result.
The chapter contains a solid block of rather formal
calculations (pages 50-56). Psychologically, it seemed a
pity to have such a block early in the book, but logically
I did not see where else I could put it. I would advise
you not to take these calculations too seriously at a first
reading. The ideas are explained before the calculations
begin. The calculations are there simply to show that
the program can be carried through. At a first reading,
you may like to take my word for this and skip pages
50-56. Later, when you have seen the trend of the whole
book, you may return to these formal proofs. I would
particularly emphasize that the later chapters do not in
any way depend on the details of these calculations—
only on the resulis.

The middle of the book is fairly plain sailing. You
should be able to read these chapters fairly easily.

I am indebted to Professor Joseph Landin of the
University of Illinois for the suggestion that the book
should culminate with the proof that angles cannot be
trisected by Euclidean means. This proof, in chapter 11,
shows how modern algebraic concepts can be used to
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solve an ancient problem. This proof is a goal toward
which the earlier chapters work.

I assume, if you are a reader of this book, that you
are reasonably familiar with elementary algebra. One
important result of elementary algebra seems not to be
widely known. This is the remainder theorem. It states
that when a polynomial f(x) is divided by x — a, the
remainder is f(a). If you are not familiar with this
theorem and its simple proof, it would be wise to review
these, with the help of a text in traditional algebra.



Chapter 1

The Viewpoint of Abstract
Algebra

THERE ARE two ways in which children do arithmetic
—by understanding and by rote. A good teacher, cer-
tainly in the earlier stages, aims at getting children to
understand what 5 — 2 and 6 X 8 mean. Later, he
may drill them so that they will answer “48” to the
question “Eight sixes?”’ without having to draw eight
sets of six dots and count them:.

Suppose a foreign child enters the class. This child
knows no arithmetic, and no English, but has a most
retentive memory. He listens to what goes on. He notices
that some questions are different from others. For in-
stance, when the teacher makes the noise “What day is
it today?”’ the children may make the noise ‘“Monday”
or “Tuesday” or “Wednesday’ or “Thursday’ or “Fri-
day.” This question, he notices, has five different an-
swers. There are also questions with two possible answers,
“Yes” and “No.” For example, to the question “Have
you finished this sum?”’ sometimes one, sometimes the
other answer is given.

However, there are questions that always receive the
same answer. “Hi” receives the answer “Hi.” “Twelve
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twelves?”” receives the answer “A hundred and forty-
four”—or, at least, the teacher seems more satisfied
when this response is given. Soon the foreign child might
learn to make these responses, without realizing that
“Hi” and “144” are in rather different categories.

Suppose that the foreign child comes to school after
the children in his class have finished working with blocks
and beads. He sees 12 X 12 = 144 written and hears it
spoken, but is never present when 12 is related to the
counting of twelve objects.

One cannot say that he understands arithmetic, but
he may be top of the class when it comes to reciting the
multiplication table. With an excellent memory, he may
have complete mastery of formal, mechanical arithmetic.

We may thus separate two elements in arithmetic.
(i) The formal element—this covers everything the for-
eign child can observe and learn. Formal arithmetic is
arithmetic seen from the outside. (ii) The intuitive ele-
ment—the understanding of arithmetic, its meaning,
its connection with the actual world. This understand-
ing we derive by being part of the actual universe, by
experiencing life and seeing it from the inside.

For teaching, both elements of arithmetic are neces-
sary. But there are certain activities for which the formal
approach is helpful. In the formalist philosophy of math-
ematics, a kind of behaviorist view is taken. Instead of
asking “How do mathematicians think?”’ the formalist
philosophers ask ‘“What do mathematicians do?”> They
look at mathematics from the outside: they see mathe-
maticians writing on paper, and they seek rules or laws
to describe how the mathematicians behave.

Formalist philosophy is hardly likely to provide a full
picture of mathematics, but it does illuminate certain
aspects of mathematics.

A practical application of formalism is the design of
all kinds of calculating machines and automatic appli-
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ances. A calculating machine is not expected to under-
stand what 71 X 493 means, but it is expected to give
the right answer. A fire alarm is not expected to under-
stand the danger to life and the damage to property
involved in a fire. It is expected to ring bells, to turn on
sprinklers, and so forth. There may even be some con-
nection between the way these mechanisms operate and
the behavior of certain parts of the brain.

One might say that the abstract approach studies
what a machine is, without bothering about what it
is for.

Naturally, you may feel it is a waste of time to study
a mechanism that has no purpose. But the abstract ap-
proach does not imply that a system has no meaning
and no use; it merely implies that, for the moment, we
are studying the structure of the system, rather than its
purpose.

Structure and purpose are in fact two ways of classify-
ing things. In comparing a car and an airplane, you
would say that the propeller of an airplane corresponds
to the driving wheels of a car if you are thinking in terms
of purpose; you would however say that the propeller
corresponds to the cooling fan if you are thinking in
terms of structure.

Needless to say, a person familiar with all kinds of
mechanical structures—wheels, levers, pulleys, and so
on—can make use of that knowledge in inventing a
mechanism. In a really original invention, a structure
might be put to a purpose it had never served before.

Arithmetic Regarded as a Structure

Accordingly, we are going to look at arithmetic from
the viewpoint of the foreign student. We shall forget
that 12 is a number used for counting, and that 4+ and
X have definite meanings. We shall see these things
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purely as signs written on the keys of a machine.

Stimulus: 12 X 12.
Response: 144.

Our calculating machine would have the following

visible parts:
(i) A space where the first number is recorded.
(ii) A space for the operations 4, X, —, =+.
(iii) A space for the second number.
These constitute the input.

The output is the answer, a single number.

Playing around with our machine, we would soon
observe certain things. Order is important with <+ and
—. Thus 6 + 2 gives the answer 3, while 2 + 6 gives
the answer 1/3. But order is not important with 4+ and
X.Thus3 + 4and 4 4 3 both give 7; 3 X 4and 4 X 3
both give 12.

We have the commutative laws: a + b = b + a,a X b =
b X a. (Or ab = ba, with the usual convention of leav-
ing out the multiplication sign.)

Commutativity is not something that could have been
predicted in advance. Since 6 =+ 2 is not the same as
2 + 6, we could not say, for any sign S, that

aSb=1568Sa.

Some comment may be made here on the symbol S.
In school algebra, letters usually stand for numbers. In
what we are doing, letters stand for things written on the
keys of machines. The form a S b covers, for example,

a “times” b,

a “plus” b,

a “minus” b,

a “over” b,

a “‘to the power” b,
a “-th root of” b,

€C

a “-’s log to base” b,
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as well as many more complicated ways of combining
a and b that one could devise.

Commutativity, then, is something we may notice
about a machine. It is one example of the kind of
remark that can be made about a machine.

Ordinary arithmetic has one property that is incon-
venient for machine purposes: it is infinite. If we make
a calculating machine that goes up to 999,999 we
are unable to work out, say, 999,999 + 999,999 or
999,999 X 999,999 by following the ordinary rules for
operating the machine.

We can consider a particular calculating machine that
is very much simpler, and that avoids the trouble of
infinity. This machine will answer any question appropri-
ate to its system. It deals with a particular part or aspect
of arithmetic.

If two even numbers are added together, the result is
an even number. If an even number is added to an odd
number, the result is odd. We may, in fact, write

Even + Even = Even
Even + Odd = Odd
Odd + Odd = Even.

Similarly, there are multiplication facts,

Even X Even = Even
Even X Odd = Even
Odd X Odd = Odd.

Here we have a miniature arithmetic. There are only
two elements in it, Even and Odd. Let us abbreviate,
writing 4 for Even, B for Odd. Then

A+4=4 AXA=A4
A+ B=B AXB=A4
B+A4=8B BXA4=4

B+ B=4 BXB=B
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which may be written more compactly as
A B y:| B

A4 B A4 4
tBlB 4 XBIAB

Our foreign student would have no reason for regard-
ing A and B in the tables above as any different from
0,1,2,3, ---,in the ordinary addition and multiplica-
tion tables. He might think of it as “another arithmetic.”
He does not know anything about its meaning. What
can he observe about its structure? Does it behave at all
like ordinary arithmetic? In actual fact, the similarities
are very great. I shall only mention a few of them at
this stage.

Both addition and multiplication are commutative in
the 4, B arithmetic. For instance, A 4+ B = B + 4 and
AX B=BXA.

In ordinary arithmetic the number zero occurs. We
know the meaning of zero. But how could zero be iden-
tified by someone who only saw the structure of arith-
metic? Quite easily, for there are two properties of zero
that single it out. First, when zero is added to a number,
it makes no difference. Second, whatever number zero
is multiplied by, the result is always zero.

Thus

x4+ 0 =x
x - 0=0.

Is there a symbol in the 4, B arithmetic that plays
the role of zero? It makes a difference when B is added:
A -+ B is not 4, nor is B + B the same as B. 4 is the
only possible candidate, and in fact 4 passes all the tests.
When you add 4, it makes no difference; when anything
is multiplied by 4, you get A.

Is there anything that corresponds to 1? The only dis-
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tinguishing property I can think of for 1 is that mul-
tiplication by 1 has no visible effect:

x-1 = x.

In the 4, B arithmetic, multiplication by B leaves
any symbol unchanged. So B plays the part of 1.

This suggests that we might have done better to
choose O (capital o) as a symbol instead of 4 and I as
a symbol instead of B, because O looks like zero, and I
looks rather like 1.

Our tables would then read

O+0=0 OXO=0
O+4+1I =1 OXI =0
I +0=1 I XO=0
I +1 =0 I XI =1

Now this looks very much like ordinary arithmetic.
In fact, the only question that would be raised by some-
body who thought I stood for 1 and O for zero would be,
“Haven’t you made a mistake in writing I 4+ I = O?”
All the other statements are exactly what you would
expect from ordinary arithmetic.

The tables of this ‘““arithmetic” are

O I O I

OO I O} O O

i1l o Ay Lo I
We arrived at the tables above by considering even
and odd numbers. But we could arrive at the same pat-

tern without any mention of numbers.

Imagine the following situation. There is a narrow
bridge with automatic signals. If a car approaches from

either end, a signal “All clear—Proceed” is flashed on.
But if cars approach from both ends, a warning signal
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is flashed, and the car at, say, the north end is instructed
to withdraw.

In effect, the mechanism asks two questions: “Is a car
approaching from the south? Is one approaching from
the north?”” The answers to these questions are the input,
the stimulus. The output, the response of the mechanism,
is to switch on an appropriate signal.

For the all-clear signal the scheme is as follows.

Should all-clear signal be flashed?

Car from north?

No Yes
Car No No Yes
from
south? Yes Yes No

For the warning signal the scheme is as follows.

Should warning signal be flashed?

Car from north?

No Yes
Car No No No
from
south? Yes No Yes

If you compare these tables with the earlier ones, you
will see that they are exactly the same in structure.
“No” replaces “O,” “Yes” replaces “I’’; “all clear” is
related to -+, “warning signal” to X.

One could also realize this pattern by simple electrical
circuits.

0 (o) o o

NN 7 \ 7/
. ——

—_— 1 1 A = 1 I .1
\-o =

LR
(-
(S8
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If you had this machine in front of you, you would not
know whether it was intended for calculations with even
and odd numbers, or for traffic control, or for some other
purpose.

When the same pattern is embodied in two different
systems, the systems are called zsomorphic. In our exam-
ple above, the traffic control system is isomorphic with
the arithmetic of Even and Odd. The same machine
does for both.

Isomorphism does not simply mean that there is some
general resemblance between the two systems. It means
that they have exactly the same pattern. Our example
above shows this exact correspondence. Wherever <O
occurs in one system, ‘“No” occurs in the other; wher-
ever “I” occurs in one system, ‘“Yes” occurs in the other.

The statements, “these two systems are isomorphic’
and “there is an isomorphism between them,” are two
different ways of saying the same thing. To prove two
systems isomorphic, you must demonstrate a correspond-
ence between them, like the one in our example.

The study of structures has two things to offer us.
First, the same structure may have many different re-
alizations. By studying the single structure, we are simul-
taneously learning several different subjects.

Second, even though we have only one realization of
our structure in mind, we may be able to simplify our
proofs and clarify our understanding of the subject by
treating it abstractly—that is to say, by leaving out
details that merely complicate the picture and are not
relevant to our purpose.

Our Results Considered Abstractly

So far we have been concrete in our approach. That is,
we have been talking of things whose meaning we under-



