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1

Preliminaries

The history of the study on surface water waves, from the early work in 1687
by Newton to the pioneer resonant interaction theory in 1967 by Phillips, is
briefly reviewed first, involving two important coastal current models: one-
equation model—the mild-slope equation and its variants approximating the
vertical structure of surface waves and averaging over variable depth; a shal-
low water approximation—the Boussinesq-type equations which reduce a three-
dimensional problem into a two-dimensional one. Then three kinds of the for-
mulations on surface water wave problems, i.e. the classical, the Lagrangian and
the Hamiltonian, are described in outline.

1.1 Water Wave Theories in Historical Perspective

70.8% of the earth’s surface is covered by oceans, the great theoretical and prac-
tical importance of water waves cannot be overestimated. Surface water waves,
subjected to gravity force, surface tension, and other forces, are the most easily
observed and studied; however, there is still a lot we don’t know about these
waves, particularly in coastal waters where uneven bottom topography plays a
distinctive and vital role in wave propagation.

Historically [9], the subject of water waves traces back to the work by New-
ton in Principia (1687), against hydrostatics by Archimedes in 3 B. C. Much
later, while accompanied by nonlinear water waves considered by Gerstner, the
linear wave theory reached a real level of advances by the works of Laplace,
Lagrange, Poisson, and Cauchy. Following this is the period of substantial con-
tributions by Russell on the nonlinear solitary experiments, Green, Kelland, Airy
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on the nonlinear shallow water equations, and Earnshaw. Then, publishing his
great paper in 1847 [42], Stokes ushered in a new era of his own weakly nonlin-
ear water waves [9,10]. Later, the KdV equation of an important development
appeared explicitly in 1895 by Korteweg and de Vries, but implicitly in 1872 by
Boussinesq [33], that is, the Boussinesq equations.

Modern water wave theory began with weak, nonlinear interactions among
gravity waves on the surface of deep water [36], which were confirmed and
extended by Hasselmann [15], subsequently culminating in the Zakharov for-
mulation or the wave turbulence theory [24,41,46—48] incorporating the effects
of cubic or quartet interactions without limitations on spectral width on deep-
intermediate water. In shallow coastal water, the nonlinear wave field is dom-
inated by near-resonant quadratic interactions involving triplets of waves. It is
the main wave-current-bottom interactions that have made rich and progressive
coastal wave modeling since the late 1960s, albeit less mature relative to the
well-established deep-water wave models [18,23]. At present, there is a wide
variety of viewpoints to describe coastal water waves, such as the linear and
nonlinear, the deterministic and stochastic, the time and frequency domains,
the phase-resolving (for rapidly varying waves) and phase-averaged (for slowly
varying waves), and parabolic approximation.

An overview of the current main and typical coastal wave models is as fol-
lows.

1.1.1 The Mild-Slope Equations

Linear theory all along plays a guiding and basic role in constructing theories.
Take the mild-slope equations for example. The mild-slope equations simplify
the refraction and diffraction of the linear surface waves in water of interme-
diate, variable depths by approximating the vertical structure of the motion in
which a specific, preselected, depth function that corresponds to propagating
waves in water of constant depth is adopted, and averaging over the depth by
a vertical integration concerned essentially with Galerkin’s method and varia-
tional principles. The original mild-slope equation was derived independently
by Eckart [12], Berkhoff [5], and Smith and Sprinks [40]. Many of its extended
counterparts have since been added, but most of them deal with pure wave mo-
tion apart from a few extensions on wave-current interactions by, for example,
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Kirby [21]. Huang [17] recently showed that the classical mild-slope equation
of Berkhoff [5], the mild-slope equation for wave-current interactions by Kirby
[21], the modified mild-slope equation by Chamberlain and Porter [7], and the
hierarchy of partial differential equations by Miles and Chamberlain [34], can
arise from an elaborate system of approximations to wave-current interactions
over uneven bottoms.

Because any one-equation model cannot capture all features of the problem,
the coupled-mode system, an infinite set of coupled equations, has been investi-
gated by presenting a multi-mode approximation, such as the evanescent mode,
the bottom mode, and the propagating wave mode [3,8,30,38].

Some recent entries into extensive literature in the linear mild-slope equa-
tions are provided in [11,16,20,25,37].

There also exist a number of deterministic and stochastic nonlinear mild-
slope equations involving resonance in both wave-wave interactions and wave-
bottom interactions played dominantly by Bragg scattering [1,2,13,19,43].

1.1.2 The Boussinesq-Type Equations

Boussinesq (1872) once advanced a theory for shallow water waves over a hori-
zontal bottom, much later it was developed to the classical Boussinesq equations
for an uneven bottom by Mei and LeMéhauté [31], Madsen and Mei [28], and
Peregrine [35]. The current Boussinesq-type equations, featuring prominently
in reducing the three-dimensional problem to a two-dimensional one, have at-
tracted considerable attention over the past 20 years, thus giving rise to a num-
ber of enhanced and higher-order Boussinesq-type equations with the objective
of improving linear and nonlinear properties [22,27,29], and allowing for wave
propagation in almost all finite water depths.

Theoretically, Boussinesq-type equations are rich in almost every aspect of
wave transformation over variable depth and in ambient (depth-uniform) cur-
rents, such as short-crested waves [ 14]. It is probably the richness that has practi-
cally made the present higher-order Boussinesg-type equations dauntingly com-
plex in form. What should be the next step in the right direction by comparison
with directly using the Navier-Stokes equations?
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1.2 The Governing Equations

When water waves begin to propagate across the surface of water initially at rest,
the motion is in effect irrotational. Consider that incompressible inviscid fluid
is in irrotational motion over a rigid, impermeable bottom of varying quiescent
depth A(x,y), x and y denoting horizontal Cartesian coordinates. The vertical
coordinate, z, is measured positively upwards with the free surface elevation at
2= {(x.y.1). The governing equations for wave motion are then given as

o 0P
V"CD-F’a—:T:O. —h<Z<€~ (121)
oD 1 s (dDN| pa—7
— 4+ = | (VD)~ - =0, z=4¢, 2
ot 2[( )+<8:)jl+ p et ¢ (12.2)
d P
C+V(D V= 3. 2=, (1.2.3)
oD
z=—h, 2.
3z (1.2.4)
where @ is the velocity potential, g the gravitational acceleration, p the fluid
d

. . d
density, p, the atmospheric pressure, V = ( ) 7 represents the surface

dx’ dy

tension effect

Ca(14+80)+ E(1 4+ G2
(1+E2+E2)

7y 2Ubl o [ Ve
(1+[VE)2

)

] , (1.2.5)

in which y is the surface tension coefficient.
If p, = y=0, a combined condition for @ arises from eliminating { from
the two free surface conditions (1.2.2) and (1.2.3)

D D [0 10® 0 oD
72‘*%7*[(; Ve V*za—aH' o +<a4> =0, z=¢.

(1.2.6)
The pressure p(x,y,z.t) is given by Bernoulli equation

oD 1 ,  [(0D\?
W+§l(v¢)+<a:>

P — Pa

+gz=0, —-h<z<{€ (127




1.4 Hamiltonian Formulation 5
In water of infinite depth, the kinematic boundary condition on the bottom

(1.2.4) is replaced by

\(V-}—i)di’—»O, 7 — —oo, (1.2.8)
0z

1.3 Lagrangian Formulation

Fundamentally, mechanics can be classified as two main branches: Lagrangian
mechanics and Hamiltonian mechanics, based respectively on variational prin-
ciples and the energy concept. Luke’s variational principle [26] for irrotational
motion is

5//dedydt 0, (1.3.1)
with the Lagrangian

__p/ { (Vo)? + (%—T)z}wz} dz. (1.3.2)

It should be noted that for rotational flow there already existed Bateman’s
variational principle [4] containing the results of Seliger and Whitham [39] and
Luke [26], and the averaged Lagrangian of Whitham [44,45] rests on Luke’s
variational principle.

1.4 Hamiltonian Formulation

Zakharov [46], Broer [6], and Miles [32] independently discovered the Hamil-
tonian theory of surface waves in which the canonical variables are the velocity
potential @(x,y,7) at, and the displacement § of, the free surface,

64 _ 98 8 _ 39

5e =P5 3E=Far (1.4.1)

with
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H = // dxdyH

I , [t 2 a¢>2
= — ) Z — 3 1.4.2
3 /dxd} o +[hd~ W‘”*(a: (1.4.2)

For surface capillary-gravity waves, (1.4.2) can be extended as

:%p/ydMy ¢?+/idz(V¢f+(%§>2+ay<wl+wgﬁ—1>

(1.4.3)

In (1.4.1), { and ¢ can be respectively replaced by their Fourier decomposition
coefficients, §; and ¢, that is

S 3G S o

sor Par 8k Par tlAd
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Weakly Nonlinear Water Waves Propagating
over Uneven Bottoms

A number of errors involving the expressions for the concepts, the algebraic
operations, and the typographical in the derivation of the third-order evolution
equations of Liu and Dingemans are pointed out and corrected. These modified
equations are then extended to fourth-order with the stability analysis for uni-
form Stokes waves in which there exist certain fourth-order terms concerning
the stability of finite depth waves, and to including the effects of ambient cur-
rents. These extensions result in a couple of equations, i.e. a general third-order
evolution equation for the envelope of a modulated wave train with a current
over an uneven bottom and an equation of the second-order (locked and free)
long waves induced by the modulated wave train.

2.1 Modified Third-Order Evolution Equations of Liu and
Dingemans

To a great extent, evolution equations in coastal waters depend on how to de-
scribe topographical features [11]. The more typical the bottom topography is,
the more general the evolution equations are. Liu and Dingemans (hereafter re-
ferred to as L & D) [12] studied the second-order long waves generated by a
modulating wave train over such an uneven bottom as

h= ho(x1) + 8%hy (x), (2.1.1)

0(8) = O(ZTh(())) = 0(%) <1, O(kh)) =0(8%, O

hy

_ 3
1)=0(8"). 212
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x=(x,y), x1=(x1,y1)=(6x,8y), 1t =9t, (2.1.3)

where & denotes the small modulation parameter, O(6) = O(€), € is the small
nonlinearity parameter, A and A are respectively the wave length of the carrier
wave and the horizontal length scale.

A number of errors are unfortunately found in the derivation of L & D and
now corrected in their numbering equations (adding R notation) as follows
[8,10]

S (8%h)™ O™ [dd
Z ) a—+6V1ho V@ +82Vh -V&| =0, (z=—hy),

m! Jdz7" | dz
(R3.6)
0 (n,m)
¢aq = plnm), (z= —ho), (R3.28)
a(p(LO) 2 (02
20) _ 2 (1.1) _ w5
H ST @B-) ot ke 2, (R4.7)
J [ A? A
2 <@> 4V, <Cg@> —0 (R4.17)
J
(3,0) _ (2,0) (1,1)2
GB9 = - (260 +2V1 - [wokal6 O], (R4.28)

gV, - / V1¢1Odz+aa [ggzohzvl [a)()k0|¢(1*‘*)|2} =0, (R429)

L

9¢ 0 K
Vi hoV,o10 4 20 2 _
on +V [ oV19' " + 2w08|A| 0, (R4.30)
82§(2‘0) (02|A|2
T5 v, [ghevit20] — v,. 0
o 1 [8 oVig } Vi |hoVy e

—) (R4.31)



