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PREFACE

The title of this volume is an abbreviation for the more
properly descriptive one: “Topics in the theory of approxi-
mation”. It is a brief essay in a field on whieh anencyclopedia
might be written. On the personal side, it is an account
of certain aspects and ramifications of a problem to which I
was introduced at an early stage, and which has given direction
to my reading and study ever since.

One day about twenty years ago I was admitted to the
study of Professor Landau, seeking advice as to a subject
for a thesis. After some preliminary inquiries as to my
experience and preferences, he handed me a long sheet of
paper, and directed me to take notes as he enumerated some
dozen or fifteen topics in various fields of analysis and number
theory, with a few words of explanation of each. He told
me to think about them for a few days, and to select one
of them, or any other problem of my own choosing, with the
smgle reservation that I should nof prove Fermat’s theorem,
an injunction which T have observed faithfully, Guided partly
by natural inclination, perhaps, and partly by recollection
of a course on methods of approximation which I had taken
with Professor Bocher a few years earlier, I committed myself
to one of the topics which Landau had proposed, an investi-
gation of the degree of approximation with which a given
continuous function can be represented by a polynomial of
given degree. When I reported my choice, he said meditative-
ly, in words which I remember vividly in substance, if not
perfectly as to 1d10m “Das ist ein schénes Thema, ich beneide
Sie um das Thema ... Nein, ich beneide Sie nicht, aber es
ist ein Wundersc‘h(ines Thema!” It is in fact a problem which

admits a surprising variety of interesting developments on
iii



iv PREFACE

its own account, and offers a natural avenue of approach
to a number of fields of still broader importance.

Although delayed in its completion by the conflict of other
duties, the following exposition is substantially in the form
in which it was projected at the time of the Colloguium
lectures in 1925, and presented in abstract in the lectures
themselves. One section, on the vector analysis of function
space, originally designed for inclusion in the Colloguium,
has meanwhile been published separately instead. The sections
which had been written at full length in September, 1925
— practically the whole of the first chapter, parts of the
second, and most of the third — have been left unchanged,
except in minor details. The elementary account of Legendre
series in Chapter I, for example, was written before the appear-
ance of the admirable article on the subject by M. H. Stone
in vol. 27 of the Annals of Mathematics. A few other articles
published since 1925 are mentioned in the text.

For the most part, however, citations of the literature have
been omitted. The preparation of a really adequate bibliog-
raphy would have been a task of such magnitude as to
delay the publication indefinitely. References to some of
the most important papers of not too recent date are con-
tained in my thesis (Gdttingen, 1911) and in my report
on The general theory of approximation by polynomials and
trigonometric sums in vol. 27 of the Bulletin of the American
Mathematical Society. Among publications in book form
supplementing the material given here, mention should be
made of Borel's Legons sur les fonctions de variables réelles
et les développements en séries de polynomes, de la Vallée
Poussin’s Legons sur Uapproximation des fonctions d'une
variable réelle, and S. Bernstein’s Legons sur les propridiés
extrémales et la meilleure approximation des fonctions analytiques
d'une variable réelle, all appearing in the Borel series. As
to the content of these lectures themselves, there are many
points where it would be difficult now to recall the original
sources either of specific results and proofs or of suggestions
as to method. To the extent that the work is my own, some
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parts have been published previously, in my thesis, in various
articles in the Transactions of the American Mathematical
Society, and elsewhere; other parts are now offered in print
for the first time. Numerous detailed acknowledgments, not
repeated here, have been made in the pages of the earlier
publications. In connection with Chapter IV, reference should
still be made to the work of Faber on trigonometric inter-
polation in his memoir Uber stetige Funktionen (zweite Ab-
handlung) in vol. 69 of the Mathematische Annalen. My
acquaintance with the statistical formulas discussed in Chapter V,
which might have come from any of a variety of sources, was
in fact mostly obtained from Yule's Introduction to the The-
ory of Statistics. The lemma on which the method of Chapter ITT
depends is derived from the most imi)ortant single memoir in
the literature on degree of approximation, S. Bernstein’s epoch-
making prize essay of 1912, with which the present work also
has other points of contact. And in conclusion it should be
said that my study of the problem has been dominated from
the beginning not only by the influence of my own teachers,
but also by the writings of Lebesgue and de la Vallée Poussin.

October 1, 1929
DunNHAM JACKSON
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CHAPTER 1

| CONTINUQOUS FUNCTIONS

Introduction

Weierstrass first enunciated the theorem that an arbitrary
continuous function can be approximately represented by a
polynomial with any assigned degree of accuracy. The
theorem may be stated with precision in the following form:

If f(x) is-a given function, continuous for a < x < b, and
if & s a given positive quantity, it is always posszble to define
a polynomial P(x) such that '

@) —P@)] <
Jra<lxz=<h
To Weierstrass is due ‘also the corresponding theorem on
approximation by means of trigonometric sums:
If f(x) is a given function of period 2 m, continuous for
all real values of =, and if € is a given positive quantity, it
78 always possible to define a trigonometric sum T (x) such that

f@)—T@)|<e

Jor all real values of .
By a polynomzal is meant an expression of the form

wtaxtomrit ... Fanat

This expression will be said to represent a polynomial of
the nth degree, not only when a, is different from zero, but,
in distinction from the usage which prevails in some parts
of algebra, also when a, = 0. That is to say, the words
“polynoniial of the nth degree” will be used in place of the
- longer expression “polynomial of the nth degree at most”.

Even the case of identical vanishing is not excluded. A #rig-
1 1



2 THE THEORY OF APPROXIMATION

onomeltric sum, or more specifically a trigonometric sum of
the nth order, is an expression of the form

Aot a1 €08 x+az cos 22+ ... +ap cos na
-+0b; sin 2+ be sin 224 ... +b, sin nx.

The definition is inclusive once more; the simultaneous vanish-
ing of a» and b, is not ruled out.

These two types of approximating function show a persistent
and fundamental similarity in their behavior, on which
differences of more or less significance are from time to time
superimposed. Simplicity of statement and proof will favor
sometimes one and sometimes the other.

It is readily seen that the number of terms required to
yield a specified degree of approximation, or, under the
converse aspect, the degree of approximation attainable with
a specified number of terms, will be related to the properties
of continuity of f(x). It is the purpose of the next pages
to trace out this relationship in some detail.

1. Approximation by trigonometric sums

For a considerable body of results, the following theorem
may be regarded as fundamental: ‘
THEOREM 1.  If f(x) is a function of period 2m, such that

|f(~702) _f(fcl)l < ]'1552—331 |

Jor all real values of x, and xs, A being a constant, there will
exist for every positive integral value of m a trigomometric
sum Tw(x), of the nth order, such that, for all real values of x,

K2

f@—Ta@| < ==,

- where K is an absolute constant, depending neither on x, nor
on m, nor on A, nor on any further specification with regard
to the function f(x).

In the proof of the theorem, use will be made of the
following
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LeMMA. If m 48 a positive integer, the expression

sint (mz/2)
sin® (z/2)

8 a trigonomelric sum in z, of order 2m— 2.
Becanse of the identity

oS P COS g — % [cos (p +a)z + cos (p — g)]

and the others of similar type, it is seen at once that the
product of two trigonometric sums, of orders », and x,
respectively, is a trigonometric sum of order n, +mny. It is
sufficient for the purpose in hand, therefore, to recall any
one of the numerous proofs of the well-known fact that

sin®(mz/2) 1— cosma

sin*(xz/2) =  1—cosxz

is a trigonometric sum of order m—1; its square will then
be a sum of order 2m —2. The fact that 1 —cosmz is
equal to the product of 1 —cosz by a trigonometric sum of
order m —1 appears, for example, from the identities

m—1

1—cosmx = ZZ)[cospx—cos(p-i—'l)x],

Pr—

cospr—ecos(p+1)x

= (l—cosw)—ﬁl[cos(q—l)w—-%osqw
! +cos(g+ 1)z],
cos(g—1)xz— 2 cosqz + cos(g+ 1)z
= [cos(g — 1)z + cos(g+1)x] —2cosqx
== 2 cosqx cosxr—2cosqx
= —2cosqz(l — cosx).

To proceed with the proof of the theorem, let

sinmu
msinu

/2
|\ @ =t [7, f@t20) PaGan,

1*

Foluw) = [
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where m is any positive integer, and A is defined by the

equation
1 ‘ /2
h—m- == __szm(u)du.

By means of the substitution x+2u = v, the expression
for In(x) is transformed into

1 7 1

?h’",j;in S @) F [?(v—x)] dv.
Both factors in the last integrand have the period 27 with
regard to v, so that the value of the integral is unchanged
if the interval of integration is replaced by any other interval
of length 27. In particular,

In(@) =+ hm " 70 Fm[—;—(v—x)]dv.

The expression Fi,[}(v—=z)], by the Lemma above, is a
trigonometric sum of order 2m—2 in (v—x), and may be
regarded as a trigonometric sum of the same order in z,
with coefficients which are trigonometric functions of v. The
whole integrand is a trigonometric sum in  with coefficients
which are continuous functions of v, and I.(x) therefore is
a trigonometric sum of order 2m — 2 in &, with constant co-
efficients. The proof that this sum is an approximate rep-
resentation of f(x), when m is large, will be based on the
original representation of In(x).

Let the equation defining %, be multiplied by ZAmf(x).
Since f(z) is a constant as far as w is concerned, it may be
placed under the sign of integration, so that

S@) = hm _7/;2 S (x) Fp (w) du.
Consequently
TR
In@—f@ = hn | [F@+20)—F @] Fa) du.
By the hypothesis imposed on f(z),
|f@+2u)—f(@)]| < 24 ul.



I. CONTINUOUS FUNCTIONS b

Hence ‘
12
| In@—f @) < 24hn [ |u| Fnte) du,

or, since Fn(u) and |u|Fp (») are even functions of u,

Fn(u)d
|Im(x)—f(x)|§4lhmf uFm(u)du,_..2}.‘r” i_li_u

7t/2

Fp(u)du

0
To anticipate the conclusion of the proof, let

2 gint ¢ sin* t
€ =— o Tdt, Cg —fw t.

These quantities are merely numerical constants. I is clear
that each integrand approaches a limit for ¢ = 0, and that
the improper integral defining ¢; is convergent.

By the use of the fact that 0 << sinu < w for 0 < u < /2,
and the substitution mu = ¢, it is recognized that

f" Fm(u)du>Jm [smmu] 1 J‘"‘"’? smt

72 sin*¢ _
mdo Tt T T

N

On the other hand, (sinu)/« decreases monotonically as u
goes from 0 to =/2, so that

sin u sin(#/2) _ 2 1 @& 1
. #=/2) — a’ sinw 2

throughout the interior of this interval. Hence

4 g2 1 4
fmuFm (w)du g —71 J u [M] du
0
f’""” sin*#

1 sin*t . (@) ¢
<W(-2—)L£ Tt dt_(2) m?
From these relations it follows that

| In (@) —f (=) | <

Cs A
8c m'
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Now let » be an arbitrary integer, and let m be taken
equal to in-+1 or 3(n+1), according as = is even or odd.
In either case, 2m—2 < n<2m. Let the corresponding
expression I, (z) be denoted by 7% (x). Then T,(x) is a
trigonometric sum of the »nth order (it will be remembered
that this is understood to mean of the nth order af most,
according to the more usual terminology), and, since 1/m < 2/n,

!Im () — j(?) = to - _,,,_'q}

if K is taken equal to m*cy/(4¢;). Thus the proof of the
theorem is completed.

So much has been conceded to simplicity of outline, in
building up the above inequalities, that the final upper limits
are quite unnecessarily large, giving little indication of the
actual magnitude of the quantities that precede. It will
add a little to the definiteness of the conclusion to point
out that ¢, > (2/@)% since (sin f)/t>2/7 throughout the
interior of the interval of integration, while

e _J sin‘ th—f sin® tdi\f tdi+
1

so that

e o < g2,<100.

With more attention to detail, however, the estimate can be
cut very much closer. The theorem is actually true with
K — 3, instead of the value adopted above, or even with
a somewhat smaller value of K. On the other hand, it can
be shown that the statement is not generally true with a value
of K smaller than /2.

To pass on to a more general theorem, let f(x) be an
arbitrary continuous function of period 27, and let w(d) be
the maximum of |f(xs)—f(x;)| for |zs—ax | < 6. The
function w(d) has been called by de la Vallée Poussin the
modwlus of continuity of f(x). With the word maximum
replaced by least upper bound, it can be defined for any

K =
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bounded function, whether continuous or not. The character-
istic property of a unmiformly continuous function is that
limj_o @(d) = O.

Let ¢ (x) be the continuous function of period 27 which
takes on the same values as f(x) at the points

—n, ‘_"+2T:t"y ___n_.}_in{t_’ Tty ”_%n'" T,
and is linear from each point of this set to the next. The
graph of p(x) is a broken line, no segment of which has
a slope greater than w(2n/%)/(27/n) in absolute value..
In analytical language, ¢ (x) satisfies the hypothesis of
Theorem I, with
w(2n[n)

A ==
2r/n

For every positive integral value of n, therefore, there is
a trigonometric sum Ty (x), of the nth order, such that

K 2
lp@)—Tal@)| < 5o (_'n—)
On the other hand, any specified value of z differs by less
than 2n/n from one of those for which f and ¢ are by de-
finition equal to each other; neither f(x) nor ¢(x) can differ
by more than w(27/n) from the corresponding common value;

and hence
F@—9@| < 20 (3F)

n

for all values of #. If the quantity K/(27)-2 is denoted
by K’, the last two inequalities may be combined to yield
the following statement:

TueoreM II. If f(x). is a continuous function of period
27, with modulus of continuity w(0), there ewisis for every
positive integral value of n a trigonometric sum Tn(2), of
the nth order, such that, for all real values of z,

F@—Tu@) < K (),
where K' is an absolute constant.
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While this theorem is applicable to any continuous function,
it involves the modulus of continuity in the inequality which
forms the essence of its conclusion. It can be shown that
the assignment of an outer limit of error for an arbitrary
continuous function, without some dependence on properties
of the function beyond the mere fact of its continuity, is
impossible.

Since limp—w w(27/n) = 0, it is to be noted that
Theorem II includes one of the theorems of Weierstrass to
which reference was made in the opening lines of the chapter.

In preparation for the next developments, there is occasion
to examine more closely the proof that was given above for
‘Theorem I. It will be recalled that to an arbitrary positive
integer » a second positive integer m was assigned, in terms
of which a function Fi, (x) was constructed; and a trigono-
metric sum 7,(xz), yielding an approximate representation
of the given function f(x), was defined as equal to an ex-
pression which could be reduced to the form

%hmfnf(v) Fr [% (v-—x)] dv,

hm being independent of x. A lemma stated essentially that
Fm (3u) is a trigonometric sum in u, of order 2m — 2 < m.
It is possible therefore to write’ Fyn[3 (v—x)] in the form

%A,,o + 3 [k cos k (v—2) + Bu sin k (0—2)}.
k=1

When -the above expression for T,(x) is expanded as a trig-
onometric sum in z, the constant term is

1
'th, Anofnf(v) d'U,

and is zero if the last integral vanishes, an observation which
will presently be important, for the reason that the indefinite
integral of a trigonometric sum without constant term is
itself a trigonometric sum, while this is not the case if the
sum to be integrated has a constant term different from zero.
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It may be pointed out in this connection, though it is not
essential to the main argument, that the coefficients B, are
all zero. This can be inferred from an elementary theorem
on trigonometric sums, since F, (3 u) is an even function of u,
and is also directly apparent on inspection of the proof of
the lemma. If a, bx are the Fourier coefficients of f(z):

1 1 .
ar == ;J:tf(v) coskvdv, bk=-n—f”f(v) sin kv dv,
and if § 7 &y Apx is denoted by dy, it is seen that

1 13
Thix) = gdm) a°'+k§ dnic (az coskx + by sinkzx).

As the d's are independent of the function to be represented,
the caleulation of the successive expressions 7). (x) amounts
to a method of summation of the Fourier series for f(z).

To return from the digression of the last paragraph, let
S(x) be a function of period 27, which has everywhere
a continuous derivative f'(x). For a particular valne of n,
let #(x) be a trigonometric sum of the nth order, without

constant term:
113

th(x) = 72 (or cos kx + By sinkx),

=1

and let ¢, be a constant such that
S @) —th(@)] £ e

for all values of x. Let #.(x) be the trigonometric sum,
without constant term, which has #,(x) for its derivative:

n
ta(x) = 2 (i"i sinkx — A cos kx) s
k=1 k . k
and let r,(x) = f(x)—t.(x). Then vn(x) has the period 27,
and, since |1y (x)| < €x, satisfies the conditions imposed on f(x)
in the hypothesis of Theovem I, with A = &;,. Hence there
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exists a trigonometric sum of the nth order, which may be
denoted by 7,(z), such that
N K
I"n(-l‘) - Tu(l') I é = .
n
It Tu(x) = tu(x) +zalz), then f(x)— Tu(x) = rn(@)—z1(2),
and

| f @) — Ta@)| < —K%—

From the existence of an approximation for /' (x) it has been
possible to draw an important inference with regard to the
approximation of f(x). If f(x) is itself the derivative of
-a function of period 2, so that the integral of f(x) over
an interval of length 27 is zero, it follows that

Jz’rn(w) dx =J:f(m) dx—fntn(w)dx = 0,

whence, according to the second paragraph preceding, the
sum 7, (x) given by the proof of Theorem I as an approximation
for r,(x) will have no constant term. So the constant term
in the present T, (r), defined in terms of this z.(z), will be
zero likewise. '

The way has now been prepared for a demonstration of

Turorem IIL.  If f(x) is a function of period 27, having
a pth derivative fP (x) such that

]f"’)(xg)—f(p)(xl)l < “-Te—-%‘li

Jor all real values of x; and xs, A being a constant, there will
exist for every positive integral value of n a trigonometric sum
Ty(x), of the nth order, such that, for all real values.of x,

Ko+1),

ne+l !

|f(w)_'Tn(x)|

A

where K s the absolute constant found in the proof of
Theorem 1.

It is to be noticed that the argument is based on the ex-
plicit construction of the approximating sum in Theorem I,



