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Preface

Formal engineering methods are changing the way that software systems are de-
veloped. With language and tool support, they are being used for automatic code
generation, and for the automatic abstraction and checking of implementations.
In the future, they will be used at every stage of development: requirements,
specification, design, implementation, testing, and documentation.

The ICFEM series of conferences aims to bring together those interested in
the application of formal engineering methods to computer systems. Researchers
and practitioners, from industry, academia, and government, are encouraged to
attend, and to help advance the state of the art. Authors are strongly encouraged
to make their ideas as accessible as possible, and there is a clear emphasis upon
work that promises to bring practical, tangible benefit: reports of case studies
should have a conceptual message, theory papers should have a clear link to
application, and papers describing tools should have an account of results.

ICFEM 2004 was the sixth conference in the series, and the first to be held in
North America. Previous conferences were held in Singapore, China, UK, Aus-
tralia, and Japan. The Programme Committee received 110 papers and selected
30 for presentation. The final versions of those papers are included here, together
with 2-page abstracts for the 5 accepted tutorials, and shorter abstracts for the
4 invited talks.

We would like to thank: Dines Bjgrner, for his work in organizing speakers
and sponsors; Jin Song Dong and Jim Woodcock, for an excellent handover from
ICFEM 2003; Joxan Jaffar, J Strother Moore, Peter Neumann, and Amitabh
Srivastava, for agreeing to address the conference; the authors, for submitting
their work; the Programme Committee, and their colleagues, for their reviews;
and Springer, for their help with publication.

ICFEM 2004 was organized by Microsoft Research in Seattle, with additional
support and sponsorship from the University of Oxford, the United Nations
University, Formal Methods Europe, NASA, and ORA Canada.

November 2004 Jim Davies
Wolfram Schulte
Mike Barnett
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1 Model-Based Development

In a nutshell, a model-based approach offers several benefits:

Improved Product: By moving away from an implementation biased view of
a system, the developer can focus on the important issues of the product
under development. This results in

— thinking in terms of the domain-specific conceptual model (state, inter-
action, etc.) instead of the coding level (objects, method calls, etc.)

— narrowing the gap between informal specification and formal specifica-
tion (since, e.g., notions like mode, event, or communication, appear in
the informal specifications as well as in the model)

— limiting the possibility of making mistakes while building models and
refining them by ensuring consistency conditions (e.g. interface correct-
ness, absence of undefined behavior)

Improved Process: Using a better structured product model helps to identify
more defects earlier. Additionally, higher efficiency can be obtained by more
CASE-supported process steps

— mechanizing conceptual consistency conditions, either guaranteed by
construction (e.g., interface correctness) or checked automatically on de-
mand (e.g., completeness of defined behavior)

— supporting semantical consistency conditions, either automatically (e.g.,
checking whether an EET can be performed by system), or interactively
(e.g., by ensuring a safety condition of a system)

— enabling transformations of specification (e.g. inserting standard behav-
ior for undefined situations), interactively carried out by the CASE tool.

The limit of model-based support is defined by the sophistication of the
underlying model: by adding more domain-specific aspects, more advanced tech-
niques can be offered (e.g., reliability analysis, schedule generation).

2 Structured Development

Model-based development is all about adding the structuring and preciseness of
formal approaches to the development process while being driven by the models
of the application domain instead of mathematical formalisms.
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2 B. Schatz

Thus it helps reducing the complexity of the development process by clearly
focusing on specific issues and offering suitable, generally CASE-supported tech-
niques tailored for each step of the development (see also [1]):

Step 1: By linking informal requirements and the models of system and en-
vironment, we can check whether all informal requirements are covered or
trace back from design to requirements; but most importantly, it helps to
structure the requirements, get a better understanding, and identify open
issues in the requirements.

Step 2: By modeling the environment and its interface to the system, we get
a precise understanding of how the system influences the environment and
how the environment reacts. Especially important, we precisely state what
properties of the environment we take for granted and which possibly faulty
behavior we must tolerate to establish the required safety behavior.

Step 3: By defining the abstract, possibly incomplete and non-deterministic
behavior of the system, we describe a high-level initial design without al-
ready incorporating implementation details complicating the design or lim-
iting further decision. Furthermore, we establish the basis for further analysis
and development steps.

Step 4: By analyzing the models of system and environment for their validity,
we ensure their usefulness for the following steps; using simulation or con-
ceptual consistency checks, we identify open issues like unrealistic behavior
of the environment, as well as undefined behavior of the system.

Step 5: By using even stronger techniques we establish whether the defined
behavior of the system ensures the expected behavior of the environment.
Using formal verification, we show that the system guarantees the safety
requirements of the environment assuming optimal circumstances; further-
more, using failure analysis, we show that also mean time requirements are
met using quantitative assumptions about the environment.

Step 6: By applying structural refinement, we add further design decisions
concerning the architecture of a system by breaking it up into interacting
sub-components. By adding behavior to each sub-component, we can make
sure that the refined system implements the abstract one.

Step 7: By restricting non-deterministic or undefined behavior, we add fur-
ther design decisions concerning underspecified behavior of the introduced
components, resulting in a more optimized reaction of the system while main-
taining the overall functionality.

Step 8: By checking the components of the system for possible undefined be-
havior we identify remaining open behavior to be resolved in the final im-
plementation. By adding standard reactions for open behavior, we improve
the robustness of the system against unexpected behavior.
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Abstract. RAISE — Rigorous Approach to Industrial Software Engi-
neering — was first developed in European collaborative projects during
1985-94. Since then a new set of free, open-source, portable tools has
been developed, and a range of developments have been carried out.
This tutorial introduces the language and method, and demonstrates
the range of software life-cycle activities supported by the tools. These
include generation of specifications from UML class diagrams, validation
and verification of specifications, refinement, prototyping, execution of
test cases, mutation testing, generation of documents, proof by means of
translation to PVS, and generation of program code in C++ by transla-
tion. A comprehensive user guide is also available.

It is a common perception that “formal methods” are difficult to use, involve a
lot of proof, are expensive, and are only applicable to small, critical problems.
The aim of this tutorial is to introduce a formal technology that is easy to learn,
need involve no proof at all, is cheap to apply, and is intended in particular to
deal with large, not necessarily critical problems.

The RAISE method [1] is extreme in its basic simplicity: you write a specifi-
cation and then you produce the implementation (if possible, automatically from
the specification). You may for a particular project want to do more than this:
you may decide you want to produce a more abstract specification first, and then
a more concrete one, and then perhaps assert (and even prove) some relation,
such as refinement, between them. But for many projects one specification is
enough [2]. If you find graphical approaches useful, you can start by drawing a
UML class diagram and generate the first specification from it.

What this simple picture of the method hides is the urgent need to validate
the specification. Many discussions on formal methods assume the specification
is correct, is what you want, and concentrate on verification, on showing that
it is properly implemented. But all this is wasted if the specification is wrong.
Mistakes made at the beginning of a project (and not quickly noticed) cause
many problems, at best time and cost overruns, and at worst complete failure.
So a major aim of the RAISE method, and of the tools that support it, is
exploring and finding problems with the specification.
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4 C. George

Concretely we can, with the tools:

— write large specifications in modules that we can analyse separately;

— generate and inspect “confidence conditions” that subtype conditions are not
violated, pre-conditions are satisfied by function calls, cases are complete,
etc.;

— trarislate and execute test cases that are recorded with the specification;

— assess the adequacy of test cases by means of specification mutation testing;

— generate high quality documents that include the specifications; and even,
for more critical applications,

— prove confidence conditions, refinement, or other properties that we choose
to assert

The RAISE Specification Language (RSL) [3] is a “wide-spectrum” language.
It supports “algebraic” as well as “model-oriented” styles, and also includes
applicative, imperative and concurrent features. It is modular, and therefore
supports the writing of a very wide range of specifications.

Introductory information on the language and method is available in a variety
of papers [4-6]. There is also an extension to RSL to deal with time [7].

The RAISE tool is open source, comes ready built for Windows, Linux and
Sparc-Solaris, and can be built in any environment where you can compile C.
There is also a comprehensive user guide [8].

The tutorial covers RSL, the method, the tools, and gives an example of a
large system specified using RAISE.
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