~ Jim Davies
Wolfram Schulte
Mike Barnett (Eds.)

Formal Methods and
Software Engineering

6th International Conference

on Formal Engineering Methods, ICFEM 2004
Seattle, WA, USA, November 2004
Proceedings

LNCS 3308

@ Springer

Jim Davies Wolfram Schulte
Mike Barnett (Eds.)

Formal Methods and
Software Engineering

6th International Conference
on Formal Engineering Methods, ICFEM 2004

Seattle, WA, USA, November 8-12, 2004
Proceedings

@ Springer

Volume Editors

Jim Davies

University of Oxford, Software Engineering Programme
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
E-mail: jim.davies @comlab.ox.ac.uk

Wolfram Schulte
Mike Barnett

Microsoft Research
One Microsoft Way, Cedar Court 113/4048, Redmond, WA 98052-6399, USA

E-mail: {schulte, mbarnett} @microsoft.com

Library of Congress Control Number: 2004114617

CR Subject Classification (1998): D.2.4,D.2, D.3,E3

ISSN 0302-9743
ISBN 3-540-23841-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11348801 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3308

Lecture Notes in Computer Science

For information about Vols. 1-3203

please contact your bookseller or Springer

Vol. 3308: J. Davies, W. Schulte, M. Barnett (Eds.), For-
mal Methods and Software Engineering. XIII, 500 pages.
2004.

Vol. 3305: P.M.A. Sloot, B. Chopard, A.G. Hoekstra
(Eds.), Cellular Automata. XV, 883 pages. 2004.

Vol. 3302: W.-N. Chin (Ed.), Programming Languages and
Systems. XIII, 453 pages. 2004.

Vol. 3299: F. Wang (Ed.), Automated Technology for Ver-
ification and Analysis. XII, 506 pages. 2004.

Vol. 3295: P. Markopoulos, B. Eggen, E. Aarts, J.L. Crow-
ley (Eds.), Ambient Intelligence. XIII, 388 pages. 2004.

Vol. 3294: C.N. Dean, R.T. Boute (Eds.), Teaching Formal
Methods. X, 249 pages. 2004.

Vol. 3293: C.-H. Chi, M. van Steen, C. Wills (Eds.), Web
Content Caching and Distribution. IX, 283 pages. 2004.

Vol. 3292: R. Meersman, Z. Tari, A. Corsaro (Eds.), On the
Move to Meaningful Internet Systems 2004: OTM 2004
Workshops. XXIII, 885 pages. 2004.

Vol. 3291: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE. XXV, 824 pages. 2004.

Vol. 3290: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE. XXV, 823 pages. 2004.

Vol. 3289: S. Wang, K. Tanaka, S. Zhou, T.W. Ling, J.
Guan, D. Yang, F. Grandi, E. Mangina, L.-Y. Song, H.C.
Mayr (Eds.), Conceptual Modeling for Advanced Appli-
cation Domains. XXII, 692 pages. 2004.

Vol. 3288: P. Atzeni, W. Chu, H. Lu, S. Zhou, T.W. Ling
(Eds.), Conceptual Modeling — ER 2004. XXI, 869 pages.
2004.

Vol. 3287: A. Sanfeliu, J.F. Martinez Trinidad, J.A. Car-
rasco Ochoa (Eds.), Progress in Pattern Recognition, Im-
age Analysis and Applications. XVII, 703 pages. 2004.

Vol. 3286: G. Karsai, E. Visser (Eds.), Generative Pro-
gramming and Component Engineering. XIII, 491 pages.
2004.

Vol. 3285: S. Manandhar, J. Austin, U. Desai, Y. Oyanagi,
A. Talukder (Eds.), Applied Computing. XII, 334 pages.
2004.

Vol. 3284: A. Karmouch, L. Korba, E.R.M. Madeira
(Eds.), Mobility Aware Technologies and Applications.
XII, 382 pages. 2004.

Vol. 3281: T. Dingsgyr (Ed.), Software Process Improve-
ment. X, 207 pages. 2004.

Vol. 3280: C. Aykanat, T. Dayar, I. Kérpeoglu (Eds.), Com-
puter and Information Sciences - ISCIS 2004. X VIII, 1009
pages. 2004.

Vol. 3278: A. Sahai, F. Wu (Eds.), Utility Computing. XI,
272 pages. 2004.

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XITI1, 465 pages. 2004.

Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-
lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 454 pages. 2004.

Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management
of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun (Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3269: J. Lopez, S. Qing, E. Okamoto (Eds.), Informa-
tion and Communications Security. XI, 564 pages. 2004.

Vol. 3266: J. Solé-Pareta, M. Smimov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. XVI, 390 pages. 2004.

Vol. 3265: R.E. Frederking, K.B. Taylor (Eds.), Machine
Translation: From Real Users to Research. XI, 392 pages.
2004. (Subseries LNAI).

Vol. 3264: G. Paliouras, Y. Sakakibara (Eds.), Gram-
matical Inference: Algorithms and Applications. XI, 291
pages. 2004. (Subseries LNAI).

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3262: M.M. Freire, P. Chemouil, P. Lorenz, A. Gravey
(Eds.), Universal Multiservice Networks. XIII, 556 pages.
2004.

Vol. 3261: T. Yakhno (Ed.), Advances in Information Sys-
tems. XIV, 617 pages. 2004.

Vol. 3260: .G.M.M. Niemegeers, S.H. de Groot (Eds.),
Personal Wireless Communications. XIV, 478 pages.
2004.

Vol. 3258: M. Wallace (Ed.), Principles and Practice of
Constraint Programming — CP 2004. XVII, 822 pages.
2004.

Vol. 3257: E. Motta, N.R. Shadbolt, A. Stutt, N. Gibbins
(Eds.), Engineering Knowledge in the Age of the Semantic
Web. XVII, 517 pages. 2004. (Subseries LNAI).

Vol. 3256: H. Ehrig, G. Engels, F. Parisi-Presicce,
G. Rozenberg (Eds.), Graph Transformations. XII, 451
pages. 2004.

Vol. 3255: A. Bencziir, J. Demetrovics, G. Gottlob (Eds.),
Advances in Databases and Information Systems. XI, 423
pages. 2004.

Vol. 3254: E. Macii, V. Paliouras, O. Koufopavlou (Eds.),

Integrated Circuit and System Design. XVI, 910 pages.
2004.

Vol. 3253: Y. Lakhnech, S. Yovine (Eds.), Formal Tech-
niques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. X, 397 pages. 2004.

Vol. 3252: H. Jin, Y. Pan, N. Xiao, J. Sun (Eds.), Grid and
Cooperative Computing - GCC 2004 Workshops. X VIII,
78S pages. 2004.

Vol. 3251: H. Jin, Y. Pan, N. Xiao, J. Sun (Eds.), Grid and
Cooperative Computing - GCC 2004. XXII, 1025 pages.
2004.

Vol. 3250: L.-J. (LJ) Zhang, M. Jeckle (Eds.), Web Ser-
vices. X, 301 pages. 2004.

Vol. 3249: B. Buchberger, J.A. Campbell (Eds.), Artificial
Intelligence and Symbolic Computation. X, 285 pages.
2004. (Subseries LNAI).

Vol. 3246: A. Apostolico, M. Melucci (Eds.), String Pro-
cessing and Information Retrieval. XIV, 332 pages. 2004.

Vol. 3245: E. Suzuki, S. Arikawa (Eds.), Discovery Sci-
ence. XIV, 430 pages. 2004. (Subseries LNAI).

Vol. 3244: S. Ben-David, J. Case, A. Maruoka (Eds.), Al-
gorithmic Learning Theory. XIV, 505 pages. 2004. (Sub-
series LNAI).

Vol. 3243: S. Leonardi (Ed.), Algorithms and Models for
the Web-Graph. VIII, 189 pages. 2004.

Vol. 3242: X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J.
Merelo-Guervés, J.A. Bullinaria, J. Rowe, P. Tifio, A.
Kabdn, H.-P. Schwefel (Eds.), Parallel Problem Solving
from Nature - PPSN VIII. XX, 1185 pages. 2004.

Vol. 3241: D. Kranzimiiller, P. Kacsuk, J.J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XIII, 452 pages. 2004.

Vol. 3240: I. Jonassen, J. Kim (Eds.), Algorithms in Bioin-
formatics. IX, 476 pages. 2004. (Subseries LNBI).

Vol. 3239: G. Nicosia, V. Cutello, P.J. Bentley, J. Timmis
(Eds.), Artificial Inmune Systems. XII, 444 pages. 2004.

Vol. 3238: S. Biundo, T. Frithwirth, G. Palm (Eds.), KI
2004: Advances in Artificial Intelligence. XI, 467 pages.
2004. (Subseries LNAI).

Vol. 3236: M. Nifez, Z. Maamar, FL. Pelayo, K.
Pousttchi, F. Rubio (Eds.), Applying Formal Methods:
Testing, Performance, and M/E-Commerce. XI, 381
pages. 2004.

Vol. 3235: D. de Frutos-Escrig, M. Nunez (Eds.), For-

mal Techniques for Networked and Distributed Systems
— FORTE 2004. X, 377 pages. 2004.

Vol. 3234: M.J. Egenhofer, C. Freksa, H.J. Miller (Eds.),
Geographic Information Science. VIII, 345 pages. 2004.

Vol. 3233: K. Futatsugi, F. Mizoguchi, N. Yonezaki (Eds.),
Software Security - Theories and Systems. X, 345 pages.
2004.

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3231: H.-A. Jacobsen (Ed.), Middleware 2004. XV,
514 pages. 2004.

Vol. 3230: J.L. Vicedo, P. Martinez-Barco, R. Mufioz, M.
Saiz Noeda (Eds.), Advances in Natural Language Pro-
cessing. XII, 488 pages. 2004. (Subseries LNAI).

Vol. 3229: J.J. Alferes, J. Leite (Eds.), Logics in Artificial
Intelligence. XIV, 744 pages. 2004. (Subseries LNAI).

Vol. 3226: M. Bouzeghoub, C. Goble, V. Kashyap, S.
Spaccapietra (Eds.), Semantics of a Networked World.
XIII, 326 pages. 2004.

Vol. 3225: K. Zhang, Y. Zheng (Eds.), Information Secu-
rity. XII, 442 pages. 2004.
Vol. 3224: E. Jonsson, A. Valdes, M. Almgren (Eds.), Re-

cent Advances in Intrusion Detection. XII, 315 pages.
2004.

Vol. 3223: X. Slind, A. Bunker, G. Gopalakrishnan (Eds.),
Theorem Proving in Higher Order Logics. VIII, 337 pages.
2004.

Vol. 3222: H. Jin, G.R. Gao, Z. Xu, H. Chen (Eds.), Net-
work and Parallel Computing. XX, 694 pages. 2004.

Vol. 3221: S. Albers, T. Radzik (Eds.), Algorithms — ESA
2004. X VIII, 836 pages. 2004.

Vol. 3220: J.C. Lester, R.M. Vicari, F. Paraguacu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3219: M. Heisel, P. Liggesmeyer, S. Wittmann (Eds.),
Computer Safety, Reliability, and Security. XI, 339 pages.
2004.

Vol. 3217: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2004. XXXVIII, 1114 pages. 2004.

Vol. 3216: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion - MICCAI 2004. XXX VIII, 930 pages. 2004.

Vol. 3215: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVII, 906 pages. 2004. (Subseries LNAI).

Vol. 3214: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1302 pages. 2004. (Subseries LNAI).

Vol. 3213: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1280 pages. 2004. (Subseries LNAI).

Vol. 3212: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 862 pages. 2004.

Vol. 3211: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 880 pages. 2004.

Vol. 3210: J. Marcinkowski, A. Tarlecki (Eds.), Computer
Science Logic. XI, 520 pages. 2004.

Vol. 3209: B. Berendt, A. Hotho, D. Mladenic, M. van
Someren, M. Spiliopoulou, G. Stumme (Eds.), Web Min-
ing: From Web to Semantic Web. IX, 201 pages. 2004.
(Subseries LNAI).

Vol. 3208: H.J. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004.

Vol. 3207: L.T. Yang, M. Guo, G.R. Gao, N.K. Jha (Eds.),
Embedded and Ubiquitous Computing. XX, 1116 pages.
2004. =

Vol. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, 1. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004.

Vol. 3204: C.A. Pefia Reyes, Coevolutionary Fuzzy Mod-
eling. XIII, 129 pages. 2004.

Preface

Formal engineering methods are changing the way that software systems are de-
veloped. With language and tool support, they are being used for automatic code
generation, and for the automatic abstraction and checking of implementations.
In the future, they will be used at every stage of development: requirements,
specification, design, implementation, testing, and documentation.

The ICFEM series of conferences aims to bring together those interested in
the application of formal engineering methods to computer systems. Researchers
and practitioners, from industry, academia, and government, are encouraged to
attend, and to help advance the state of the art. Authors are strongly encouraged
to make their ideas as accessible as possible, and there is a clear emphasis upon
work that promises to bring practical, tangible benefit: reports of case studies
should have a conceptual message, theory papers should have a clear link to
application, and papers describing tools should have an account of results.

ICFEM 2004 was the sixth conference in the series, and the first to be held in
North America. Previous conferences were held in Singapore, China, UK, Aus-
tralia, and Japan. The Programme Committee received 110 papers and selected
30 for presentation. The final versions of those papers are included here, together
with 2-page abstracts for the 5 accepted tutorials, and shorter abstracts for the
4 invited talks.

We would like to thank: Dines Bjgrner, for his work in organizing speakers
and sponsors; Jin Song Dong and Jim Woodcock, for an excellent handover from
ICFEM 2003; Joxan Jaffar, J Strother Moore, Peter Neumann, and Amitabh
Srivastava, for agreeing to address the conference; the authors, for submitting
their work; the Programme Committee, and their colleagues, for their reviews;
and Springer, for their help with publication.

ICFEM 2004 was organized by Microsoft Research in Seattle, with additional
support and sponsorship from the University of Oxford, the United Nations
University, Formal Methods Europe, NASA, and ORA Canada.

November 2004 Jim Davies
Wolfram Schulte
Mike Barnett

Organizing Committee

Conference Committee

Mike Barnett (Microsoft Research, USA)
Local Organization
Dines Bjgrner (National University of Singapore, Singapore)
Conference Chair
Jim Davies (University of Oxford, UK)
Programme Co-chair
Wolfram Schulte (Microsoft Research, USA)
Programme Co-chair
Hongjun Zheng (Semantics Design, USA)
Workshops and Tutorials Chair

Sponsors

Microsoft Research
www.research.microsoft.com

Oxford University Software Engineering Programme
www.softeng.ox.ac.uk

United Nations University—International Institute for Software Technology
Www.lilist.unu.edu

Formal Methods Europe (FME)
www.fmeurope.org

NASA-JPL Laboratory for Reliable Software
eis. jpl.nasa.gov/lars/

ORA Canada

WWw.Oora.on.ca

Steering Committee

Keijiro Araki (Kyushu University, Japan)

Jin Song Dong (National University of Singapore, Singapore)
Chris George (United Nations University, Macau)

Jifeng He (Chair) (IIST, United Nations University, Macau)
Mike Hinchey (NASA, USA)

Shaoying Liu (Hosei University, Japan)

John McDermid (University of York, UK)

Tetsuo Tamai (University of Tokyo, Japan)

Jim Woodcock (University of York, UK)

VIII Organizing Committee

Programme Committee

Adnan Aziz (University of Texas, USA)

Richard Banach (University of Manchester, UK)

Egon Borger (University of Pisa, Italy)

Jonathan Bowen (London South Bank University, UK)
Manfred Broy (University of Munich, Germany)

Michael Butler (University of Southampton, UK)

Ana Cavalcanti (University of Kent, UK)

Dan Craigen (ORA, Canada)

Jin Song Dong (National University of Singapore, Singapore)
Matthew Dwyer (Kansas State University, USA)

John Fitzgerald (University of Newcastle upon Tyne, UK)
David Garlan (Carnegie Mellon University, Pittsburgh, USA)
Thomas Jensen (IRISA/CNRS Campus de Beaulieu, Rennes, France)
Jim Larus (Microsoft Research, USA)

Mark Lawford (McMaster University, Canada)

Huimin Lin (Chinese Academy of Sciences, Beijing, China)
Peter Lindsay (University of Queensland, Australia)
Shaoying Liu (Hoseil University, Japan)

Zhiming Liu (United Nations University, Macau SAR, China)
Brendan Mahony (Department of Defence, Australia)

Marc Frappier (Université de Sherbrooke, Québec, Canada)
William Bradley Martin (National Security Agency, USA)
David Notkin (University of Washington, USA)

Jeff Offutt (George Mason University, USA)

Harald Ruess (Computer Science Laboratory, SRI, USA)
Augusto Sampaio (Universidade Federal de Pernambuco, Brazil)
Thomas Santen (Technical University of Berlin, Germany)
Doug Smith (Kestrel Institute, USA)

Graeme Smith (University of Queensland, Australia)

Paul A. Swatman (University of South Australia, Australia)
Sofiene Tahar (Concordia University, Canada)

T.H. Tse (Hong Kong University, Hong Kong)

Yi Wang (Uppsala University, Sweden)

Farn Wang (National Taiwan University, Taiwan)

Jeannette Wing (Carnegie Mellon University, USA)

Jim Woodcock (University of York, UK)

Organizing Committee X

Reviewers

Amr Abdel-Hamid; Isaam Al-azzoni; Adnan Aziz; Richard Banach;

Andreas Bauer; Jounaidi Ben Hassen; Egon Borger; Jonathan Bowen;

Peter Braun; Manfred Broy; Michael Butler; Colin Campbell; Ana Cavalcanti;
Alessandra Cavarra; Antonio Cerone; Yifeng Chen; Corina Cirstea;

David Clark; Dan Craigen; Charles Crichton; Jim Davies; Roger Duke;
Bruno Dutertre; Matthew Dwyer; Pao-Ann Eric Hsiung; Yuan Fang Li;

Bill Farmer; William M. Farmer; Carla Ferreira; Colin Fidge; John Fitzgerald,;
Marc Frappier; Jorn Freiheit; David Garlan; Amjad Gawanmeh;

Frederic Gervais; Jeremy Gibbons; Uwe Glaesser; Andy Gravell;

Wolfgang Grieskamp; Ali Habibi; John Hakansson; Steve Harris; Jifeng He;
Maritta Heisel; Steffen Helke; Matthew Hennessy; Xiayong Hu;

Geng-Dian Huang; Chung-Yang Ric Huang; Van Hung Dang; Jiale Huo;
Cornelia P. Inggs; Jan Jirjens; Bart Jacobs; Thomas Jensen; Thierry Jeron;
Zhi Jin; Wolfram Kahl; Soon-Kyeong Kim; Soon Kyeong Kim; Leonid Kof;
Pushmeet Kohli; Pavel Krcal; Sy-Yen Kuo; Rom Langerak; James Larus;
Mark Lawford; Ryan Leduc; Karl Lermer; Guangyuan Li; Xiaoshan Li;
Huimin Lin; Peter Lindsay; Shaoying Liu; Zhiming Liu; Quan Long;

Marcio Lopes Cornelio; Dorel Lucanu; Anthony MacDonald; Brendan Mahony;
William Bradley Martin; Jim McCarthy; M. Meisinger; Yassine Mokhtari;
Leonid Mokrushin; Alexandre Mota; Muan Yong Ng; Sidney Nogueira;

David Notkin; Jeff Offutt; Chun Ouyang; Hong Pan; Jun Pang;

Paul Pettersson; Mike Poppleton; Steven Postma; Stephane Lo Presti;
Wolfgang Reisig; Abdolbaghi Rezazadeh; River; Harald Ruess; Heinrich Rust;
Vlad Rusu; Augusto Sampaio; Thomas Santen; Renate Schmidt;

Wolfram Schulte; Thorsten Schutt; Dirk Seifert; Laura Semini; Adnan Sherif;
Benjamin Sigonneau; Carlo Simon; Andrew Simpson; Doug Smith;

Graeme Smith; Doug Smith; Colin Snook; Jin Song Dong; Maria Sorea;
Mark Staples; Jun Sun; Paul A. Swatman; Sofiene Tahar; J.P. Talpin;
Rodrigo Teixeira Ramos; Nikolai Tillmann; T.H. Tse; Phillip J. Turner;
Margus Veanes; S. Vogel; Philip Wadler; Farn Wang; Bow-Yaw Wang;

Alan Wassyng; Jun Wei; Guido Wimmel; Jeannette Wing; Kirsten Winter;
Jim Woodcock; Wang Yi; Fang Yu; Mohamed Zaki; Wenhui Zhang;
Guangquan Zhang; Ning Zhang; Riley Zheng; Xiaocong Zhou; Jeff Zucker

Table of Contents

Tutorials

Model-Based Development: Combining Engineering Approaches and

Formal Techniques
Bernhard Sz s s a.mimvims s ms e sss s s s masmsssns s senss 1

Tutorial on the RAISE Language, Method and Tools
Chris GeoTge « ss snsmnvmsmssansis soimy smsmssminmessndsms 0053 6a 3

Model-Based Testing with Spec#
Jonathan Jacky e 5

Formal Engineering for Industrial Software Development — An
Introduction to the SOFL Specification Language and Method
Shooying Lt s cmsmaimemmuwsimssms oo sme s 555 DE 0808585 680 7

Tutorial: Software Model Checking
Edmund Clarke, Daniel Kroeningccouuuuuuuuunnnnn... 9

Invited Talks

Engineering Quality Software

Amitabh STivastava 11
When Can Formal Methods Make a Real Difference?

Peter G. Neumanm oottt et 12
On the Adoption of Formal Methods by Industry: The ACL2 Experience

J Strother Moorecivaiviinissmissessininainssnssensoinsess 13
A CLP Approach to Modelling Systems

JOTGTY JOITOT 51 spsmsvnimninims smimosasms s i PRIBIRE IR NG LE5 14
Full Papers

Multi-prover Verification of C Programs
Jean-Christophe Filligtre, Claude Marché 15

Memory-Model-Sensitive Data Race Analysis
Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom................ 30

Formal Models for Web Navigations with Session Control and Browser
Cache
Jessica Chen, Xiaoshan Zhao.............. ..o uuiuiiuuinnin... 46

XII Table of Contents

Managing Verification Activities Using SVM
Bill Aldrich, Ansgar Fehnker, Peter H. Feiler, Zhi Han,
Bruce H. Krogh, Eric Lim, Shiva Sivashankar

A General Model for Reachability Testing of Concurrent Programs
Richard H. Carver, Yu Letouuueie i,

A Knowledge Based Analysis of Cache Coherence
Kai Baukus, Ron van der Meydenooiiiiiiieann..

A Propositional Logic-Based Method for Verification of Feature Models
Wei Zhang, Haiyan Zhao, Hong Mei coiuion..

Deriving Probabilistic Semantics Via the ‘Weakest Completion’
He Jifeng, Carroll Morgan, Annabelle Mclver

CSP Representation of Game Semantics for Second-Order Idealized
Algol
Aleksandar Dimouvski, Ranko Lazié0ccouiiiiininnn...

An Equational Calculus for Alloy
Marcelo F. Frias, Carlos G. Ldpez Pombo, Nazareno M. Aguirre

Guiding Spin Simulation
Nicolae Goga, Judi Romagnouuniiiiaiaanaann...

Linear Inequality LTL (¢LTL): A Model Checker for Discrete Time
Markov Chains
YoungMin Kwon, Gul Agha i,

Software Model Checking Using Linear Constraints
Alessandro Armando, Claudio Castellini, Jacopo Mantovani

Counterexample Guided Abstraction Refinement Via Program
Execution
Daniel Kroening, Alex Groce, Edmund Clarke

Faster Analysis of Formal Specifications
Fabrice Bouquet, Bruno Legeard, Mark Utting, Nicolas Vacelet.

Bridging Refinement of Interface Automata to Forward Simulation of
I/O Automata
Yanjun Wen, Ji Wang, Zhichang Qi

Learning to Verify Safety Properties
Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, Gul Agha

Automatic Extraction of Object-Oriented Observer Abstractions from
Unit-Test Executions
Tao Xie, David Notkin 0 uuiiueeeiinnn ..

Table of Contents XIII

A Specification-Based Approach to Testing Polymorphic Attributes
Ling Liu, Huaikou Miaoooiiiiiiiiiinnnnns 306

From Circus to JCSP
Marcel Oliveira, Ana Cavalcanticciiiieiiiinannn. 320

An Approach to Preserve Protocol Consistency and Executability

Across Updates
Mahadevan Subramaniam, Parvathi Chundi 341

A Formal Monitoring-Based Framework for Software Development and
Analysis
Feng Chen, Marcelo D’Amorim, Grigore Ro§u 357

Verifying a File System Implementation
Konstantine Arkoudas, Karen Zee, Viktor Kuncak, Martin Rinard ... 373

Verifying the On-line Help System of SIEMENS Magnetic Resonance
Tomographs
Carsten Sinz, Wolfgang Kichlin 00 iiiiiianinn.. 391

Implementing Dynamic Aggregations of Abstract Machines in the B
Method
Nazareno Aguirre, Juan Bicarrequi, Lucio Guzmdn, Tom Maibaum ... 403

Formal Proof from UML Models
Nuno Amdlio, Susan Stepney, Fiona Polack 418

Interactive Verification of UML State Machines
Michael Balser, Simon Baumler, Alexander Knapp, Wolfgang Reif,
Andreas TRUMSottt e e e e 434

Refinement of Actions for Real-Time Concurrent Systems with Causal
Ambiguity
Mila Majster-Cederbaum, Jinzhao Wu, Houguang Yue, Naijun Zhan.. 449

From Durational Specifications to TLA Designs of Timed Automata
Yifeng Chen, Zhiming Liuuuiiiiiiiiinann .. 464

Timed Patterns: TCOZ to Timed Automata
Jin Song Dong, Ping Hao, Sheng Chao Qin, Jun Sun, Wang Yi 483

Author Index ... 499

Model-Based Development: Combining
Engineering Approaches and Formal Techniques

Bernhard Schétz

Institut fiir Informatik, Technische Universitat Miinchen,
80290 Miinchen, Germany

1 Model-Based Development

In a nutshell, a model-based approach offers several benefits:

Improved Product: By moving away from an implementation biased view of
a system, the developer can focus on the important issues of the product
under development. This results in

— thinking in terms of the domain-specific conceptual model (state, inter-
action, etc.) instead of the coding level (objects, method calls, etc.)

— narrowing the gap between informal specification and formal specifica-
tion (since, e.g., notions like mode, event, or communication, appear in
the informal specifications as well as in the model)

— limiting the possibility of making mistakes while building models and
refining them by ensuring consistency conditions (e.g. interface correct-
ness, absence of undefined behavior)

Improved Process: Using a better structured product model helps to identify
more defects earlier. Additionally, higher efficiency can be obtained by more
CASE-supported process steps

— mechanizing conceptual consistency conditions, either guaranteed by
construction (e.g., interface correctness) or checked automatically on de-
mand (e.g., completeness of defined behavior)

— supporting semantical consistency conditions, either automatically (e.g.,
checking whether an EET can be performed by system), or interactively
(e.g., by ensuring a safety condition of a system)

— enabling transformations of specification (e.g. inserting standard behav-
ior for undefined situations), interactively carried out by the CASE tool.

The limit of model-based support is defined by the sophistication of the
underlying model: by adding more domain-specific aspects, more advanced tech-
niques can be offered (e.g., reliability analysis, schedule generation).

2 Structured Development

Model-based development is all about adding the structuring and preciseness of
formal approaches to the development process while being driven by the models
of the application domain instead of mathematical formalisms.

J. Davies et al. (Eds.): ICFEM 2004, LNCS 3308, pp. 1-2, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 B. Schatz

Thus it helps reducing the complexity of the development process by clearly
focusing on specific issues and offering suitable, generally CASE-supported tech-
niques tailored for each step of the development (see also [1]):

Step 1: By linking informal requirements and the models of system and en-
vironment, we can check whether all informal requirements are covered or
trace back from design to requirements; but most importantly, it helps to
structure the requirements, get a better understanding, and identify open
issues in the requirements.

Step 2: By modeling the environment and its interface to the system, we get
a precise understanding of how the system influences the environment and
how the environment reacts. Especially important, we precisely state what
properties of the environment we take for granted and which possibly faulty
behavior we must tolerate to establish the required safety behavior.

Step 3: By defining the abstract, possibly incomplete and non-deterministic
behavior of the system, we describe a high-level initial design without al-
ready incorporating implementation details complicating the design or lim-
iting further decision. Furthermore, we establish the basis for further analysis
and development steps.

Step 4: By analyzing the models of system and environment for their validity,
we ensure their usefulness for the following steps; using simulation or con-
ceptual consistency checks, we identify open issues like unrealistic behavior
of the environment, as well as undefined behavior of the system.

Step 5: By using even stronger techniques we establish whether the defined
behavior of the system ensures the expected behavior of the environment.
Using formal verification, we show that the system guarantees the safety
requirements of the environment assuming optimal circumstances; further-
more, using failure analysis, we show that also mean time requirements are
met using quantitative assumptions about the environment.

Step 6: By applying structural refinement, we add further design decisions
concerning the architecture of a system by breaking it up into interacting
sub-components. By adding behavior to each sub-component, we can make
sure that the refined system implements the abstract one.

Step 7: By restricting non-deterministic or undefined behavior, we add fur-
ther design decisions concerning underspecified behavior of the introduced
components, resulting in a more optimized reaction of the system while main-
taining the overall functionality.

Step 8: By checking the components of the system for possible undefined be-
havior we identify remaining open behavior to be resolved in the final im-
plementation. By adding standard reactions for open behavior, we improve
the robustness of the system against unexpected behavior.

References

1. B. Schitz. Mastering the Complexity of Embedded Systems - The AutoFocus Ap-
proach. In F. Kordon and M. Lemoine, editors, Formal Techniques for Embedded
Distributed Systems: From Requirements to Detailed Design. Kluwer, 2004.

Tutorial on the RAISE Language,
Method and Tools

Chris George

United Nations University, International Institute for Software Technology
(UNU-IIST), Macao
cwg@iist.unu.edu
http://www.iist.unu/"cwg

Abstract. RAISE — Rigorous Approach to Industrial Software Engi-
neering — was first developed in European collaborative projects during
1985-94. Since then a new set of free, open-source, portable tools has
been developed, and a range of developments have been carried out.
This tutorial introduces the language and method, and demonstrates
the range of software life-cycle activities supported by the tools. These
include generation of specifications from UML class diagrams, validation
and verification of specifications, refinement, prototyping, execution of
test cases, mutation testing, generation of documents, proof by means of
translation to PVS, and generation of program code in C++ by transla-
tion. A comprehensive user guide is also available.

It is a common perception that “formal methods” are difficult to use, involve a
lot of proof, are expensive, and are only applicable to small, critical problems.
The aim of this tutorial is to introduce a formal technology that is easy to learn,
need involve no proof at all, is cheap to apply, and is intended in particular to
deal with large, not necessarily critical problems.

The RAISE method [1] is extreme in its basic simplicity: you write a specifi-
cation and then you produce the implementation (if possible, automatically from
the specification). You may for a particular project want to do more than this:
you may decide you want to produce a more abstract specification first, and then
a more concrete one, and then perhaps assert (and even prove) some relation,
such as refinement, between them. But for many projects one specification is
enough [2]. If you find graphical approaches useful, you can start by drawing a
UML class diagram and generate the first specification from it.

What this simple picture of the method hides is the urgent need to validate
the specification. Many discussions on formal methods assume the specification
is correct, is what you want, and concentrate on verification, on showing that
it is properly implemented. But all this is wasted if the specification is wrong.
Mistakes made at the beginning of a project (and not quickly noticed) cause
many problems, at best time and cost overruns, and at worst complete failure.
So a major aim of the RAISE method, and of the tools that support it, is
exploring and finding problems with the specification.

J. Davies et al. (Eds.): ICFEM 2004, LNCS 3308, pp. 3—4, 2004.
© Springer-Verlag Berlin Heidelberg 2004

4 C. George

Concretely we can, with the tools:

— write large specifications in modules that we can analyse separately;

— generate and inspect “confidence conditions” that subtype conditions are not
violated, pre-conditions are satisfied by function calls, cases are complete,
etc.;

— trarislate and execute test cases that are recorded with the specification;

— assess the adequacy of test cases by means of specification mutation testing;

— generate high quality documents that include the specifications; and even,
for more critical applications,

— prove confidence conditions, refinement, or other properties that we choose
to assert

The RAISE Specification Language (RSL) [3] is a “wide-spectrum” language.
It supports “algebraic” as well as “model-oriented” styles, and also includes
applicative, imperative and concurrent features. It is modular, and therefore
supports the writing of a very wide range of specifications.

Introductory information on the language and method is available in a variety
of papers [4-6]. There is also an extension to RSL to deal with time [7].

The RAISE tool is open source, comes ready built for Windows, Linux and
Sparc-Solaris, and can be built in any environment where you can compile C.
There is also a comprehensive user guide [8].

The tutorial covers RSL, the method, the tools, and gives an example of a
large system specified using RAISE.

References

1. The RAISE Language Group. The RAISE Development Method. BCS Practitioner
Series. Prentice Hall, 1995. Available from ftp://ftp.iist.unu.edu/pub/RAISE/
method_book.

2. Hung Dang Van, Chris George, Tomasz Janowski, and Richard Moore. Specification
Case Studies in RAISE. FACIT. Springer-Verlag, 2002.

3. The RAISE Language Group. The RAISE Specification Language. BCS Practitioner
Series. Prentice Hall, 1992. Available from Terma A/S. Contact jnp@terma.com.

4. Chris George. A RAISE Tutorial. Technical Report 153, UNU-IIST, P.O.Box 3058,
Macau, December 1998. Presented at the BRNS workshop Verification of Digital
and Hybrid Systems at TIFR, Mumbai, India, 7-11 January 1999.

5. Chris George. Introduction to RAISE. Technical Report 249, UNU-IIST, P.O. Box
3058, Macau, April 2002.

6. Chris George and Anne E. Haxthausen. The Logic of the RAISE Specification Lan-
guage. Computing and Informatics, 22(3-4), 2003.

7. Chris George and Xia Yong. An Operational Semantics for Timed RAISE. Technical
Report 149, UNU-IIST, P.O.Box 3058, Macau, November 1998. Presented at and
published in the proceedings of FM’99, Toulouse, France, 20-24 September 1999,
LNCS 1709, Springer-Verlag, 1999, pp. 1008-1027.

8. Chris George. RAISE Tools User Guide. Technical Report 227, UNU-
IIST, P.O. Box 3058, Macau, February 2001. The tools are available from
http://www.iist.unu.edu.

