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PREFACE

Mathematics, and particularly calculus, provides an essential language and
intellectual framework for science. With the explosive growth of science and
technology comes a growing need for mastery of calculus, at least as a
language, and better yet, as a way of thinking.

The wide variation in backgrounds and talents of calculus students pre-
sents a real challenge both to the instructor and to the textbook used. This
book responds by exposing the main ideas of calculus as quickly as possible,
before elaborating all the details. For example, a chapter on the applica-
tions of calculus to problems of graphing, optimization, and motion precedes
any real discussion of limits. The idea is to exploit the students’ geometric
intuition, which is generally much better developed than their facility in
calculation.

In the course of class testing over the years, I have found only good
consequences of this approach. Students easily grasp the basic ideas of the
applications of calculus and, with the understanding of this background, de-
velop the maturity and motivation necessary for confronting the technical
questions of limits. The same philosophy determines the treatment of infinite
series and other topics. The textbook presents infinite series as a means of
calculation before developing the abstract convergence tests.

Such minor reordering of traditional topics does not imply a lax treat-
ment of the subject. Theoretical questions are treated with the prevailing stan-
dards of rigor; they are just treated somewhat later than usual. The difficult
parts of the theory—such as the proofs of the Intermediate Value Theorem
and Extreme Value Theorem and the justification of term-by-term operations
on infinite series—are postponed to an appendix. The &¢ — & definition of func-
tion limits is also in the appendix because very few students are ready for it
early in the course. But the ¢ — N definition of sequence limits is in the main
body of the text in Chapter 11; by that point the definition seems natural.

The transcendental functions are presented in the order that is currently
standard. The trigonometric functions are discussed early and provide a vari-
ety of examples for limits and derivatives. The exponential and logarithmic
functions follow integrals, but could actually be covered at any time after
Chapter 4. (Limits involving these functions are treated by I'Hopital's Rule
in Chapter 4.)

Differential equations, discussed as slope fields, are introduced as soon
as possible, beginning with antiderivatives in Chapter 2. They provide signif-
icant examples and problems throughout the text. The final chapter presents
complex numbers and their use in solving constant coefficient equations,
particularly the damped oscillator equation.
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The textbook uses several pedagogical features to reinforce topic pre-
sentations:

o An extensive art program illustrates concepts and problems with two- or
full-color figures.

e Examples, essential to illustrate and clarify general principles, are used
extensively. They are clearly set off from the text discussions and are
worked in great detail. Students should be encouraged to do their own
work in similar detail to clarify thinking and avoid careless errors.

o Section summaries precede the problem sets for that section so that stu-
dents can easily review as they work the problems.

e The problems are grouped in “A.” “B,” and “C” sets in order of increasing
maturity. “A” problems are straightforward applications of the text mate-
rial, “B” problems require more initiative or originality to work, and “C”
problems are for students who show greater mathematical sophistication.

® Review problems end each chapter.

e Answers to problems marked with an asterisk (%) are given at the end
of the book. (Answers to all the problems are given in the Instructor’s

Manual.)
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SUPPLEMENTS

For Students

Student Solutions Manual by Dennis Wortman contains solutions for those
problems that have answers in the text. (These are marked in the text with
an asterisk.) The solutions are worked out with unusual care and completeness,
and will be particularly instructive to those who want this extra help.

For Instructors

Instructor's Manual with Solutions by Dennis Wortman contains the worked-
out solutions for all the problems in the text.

Computerized Testbank (Micro-Pac Genie) by Microsystems Software, Ltd., is
the most complete test-generating and author system with graphics on the
market. This system is available for the IBM PC, XT or compatible system,
and the Macintosh.

Testbank is also available in a printed version.

COMPUTER SUPPLEMENTS FOR INSTRUCTORS
AND STUDENTS

CALCULUS 3.0 from True Basic is intended for users who wish to expand
their basic understanding. Easy-to-use features include a simple, menu-driven
interface and context-sensitive pop-up HELP and GLOSSARY screens. A
dialog box is used to enter numbers and functions and to execute problems;
a graph box displays plotted functions.

Calculus encourages free exploration of topics including the concept of limits,
tangents, 'Hopital’s Rule, as well as exploring and visualizing parametric
equations and differential equations. It is available for Apple Macintosh, IBM
PC, and IBM PS/2.
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INTERACTIVE CALCULUS from Math Lab allows students to experience
complex mathematical ideas in a graphic and intuitive setting. Concepts such
as limits, differentiation, and integration are numerically and graphically per-

formed in a single keystroke. It is available for Apple 1I, IBM PC, and IBM
PS/2.

CALCAIDE, a computer software program by Elizabeth Chang, Hood College,
is a microcomputer disk for IBM PC and IBM PS/2 systems with interactive

color graphing and numerical computation programs for the mainstream cal-
culus course.
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‘x| = distance from x to 0.

1 L] 1
COORDINATES

We begin by reviewing basic ideas and notation concerning coordinate sys-
tems. (Some of you know all of this, and all of you know some of it: that's the
nature of a review.) Then we use coordinates to investigate two “optimization”
problems, typical of those to be solved by calculus later, in Chapters 2—4.

The Number Line

The humble ruler (Fig. 1) suggests the basic premise of analytic geometry:
The points of a straight line can be identified with numbers. This appealing idea
gave rise to some deep questions: What is a line? What is a number? Fortu-
nately the questions have been answered", and we accept this premise as the
basis for uniting algebra and geometry.

To identify numbers with points on a horizontal line, choose a unit of
distance and an origin. Then label each point according to its distance from
the origin, with negative numbers to the left and positive ones to the right
(Fig. 2). You now have a coordinate axis, or a number line. The axis is the
line itself; the number associated with a point on the line is a coordinate.

On the coordinate axis, the distance from point x to the origin is the
absolute value of x, denoted |x‘ (Fig. 3):

|—2|=2.  |2|=2, |-3|=3 |o=o0.

The absolute value |x| gives the “size” of x but not its sign; that is, both 2
and — 2 have the same absolute value 2. In algebraic terms, the absolute value

is defined by
x ifxr>0
|x| - —x ifr<o.

That |x| = x when x > 0 is clear; but to understand the definition when x < 0,
try for example x = — 2

|—2|=2= —(-2)

so indeed |x| = —x when x is the negative number —2.
With a little thought and experimentation, you can understand two
properties of the absolute value:

x| = || - |yl
and

lx + y| < |x| + |y|

! One of the best answers was given by Richard Dedekind in 1872; see James R. Newman The World of
Mathematics, Vol. 1, pp 525-36.
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: ! Numbers are ordered according to their positions on the line, as shown
in Figure 4:
FIGURE 4
4 < b means a is to the left of b. a < b means a is to the left of b.

So —100 < 2; in words, — 100 is less than 2. To compare size without regard
to sign, use the absolute value; the inequality

|2| < |—100|

says that 2 is “smaller” than —100.
The difference of two numbers x; and x, is denoted Ax:

Ax=2x, —x,.
| Ax|—> 2 1

1 Ax % (The symbol A is the Greek capital letter delta, which corresponds to our

(@) ;‘Jgi:tsxio-ﬂ'fé r>ig(l)1’t S0 arrow letter D, for difference. Thus Ax is the difference of two values of x, not the
' product of a number A times a number x.) To form the difference, you need

to know which number is first and which is second, that is, you need an ordered

o o pair: x, first and x, second. Then Ax is positive if x, > x;, and negative if

n A ox x, < x;. As in Figure 5 we indicate Ax by an arrow from x; to x,; it points
&) égi:tsx%o_t}i: l<e f?’ S to the right if Ax > 0, and to the left if Ax < 0. The length of the arrow is
' the absolute value |Ax‘, which gives the distance between x; and x,:
FIGURE 5
Arrows for Ax point from x, to x,. distance from x; to x, = |x, — x;| = |Ax].

Segments on the line are called intervals of numbers. It can be crucial
to know whether the endpoints are included or not. Square brackets indicate
an included endpoint, parentheses an excluded one (Fig. 6). For example,

[a, b) = all numbers x between a and b, including 4 and excluding b.

Half open
Open interval, Closed interval, endpoint endpoint
endpoints excluded endpoints included included excluded
¢ A & 3 é
3 7 T 4 T
a b a b b

a
(@ @b={xa<x<b. @® [@bl={xa=sx=b. (O [ab={ra=x<b

FIGURE 6
Intervals: Open, closed, half open.

If both endpoints are included, the interval is called closed; if both are ex-
cluded, it is open.

To describe intervals, and sets in general, we use the concise “set-builder
notation.” With this, the interval [a, b) is described as

{r:a <x < b}

Typical Condition determining
member whether x is in the
of set. set.



