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PREFACE

Le juge: Accusé, vous ticherez d’étre bref.
L’accusé: Je tacherai d’€tre clair.

—G. CoOURTELINE

This book is the child of an unborn parent. Some years ago the senior
author began the preparation of a Colloquium volume on algebraic geom-
etry, and he was then faced with the difficult task of incorporating in that
volume the vast amount of purely algebraic material which is needed in
abstract algebraic geometry. - The original plan was to insert, from time
to time, algebraic digressions in which concepts and results from commu-
tative algebra were to be developed in full as and when they were needed.
However, it soon became apparent that such a parenthetical treatment of
the purely algebraic topics, covering a wide range of commutative algebra,
would impose artificial bounds on the manner, depth, and degree of gener-
ality with which these topics could be treated. As is well known, abstract
algebraic geometry has been recently not only the main field of applications
of commutative algebra but also the principal incentive of new research in
commutative algebra. To approach the underlying algebra only in a
strictly utilitarian, auxiliary, and parenthetical manner, to stop short of
going further afield where the applications of algebra to algebraic geometry
stop and the general algebraic theories inspired by geometry begin, im-
pressed us increasingly as being a program scientifically too narrow and
psychologically frustrating, not to mention the distracting effect that re-
peated algebraic digressions would inevitably have had on the reader,
vis-a-vis the central algebro-geometric theme. Thus the idea of a separate
book on commutative algebra was born, and the present book—of which
this 1s the first of two volumes—is a realization of this idea, come to
fruition at a time when its parent—a treatise on abstract algebraic geom-
etry—has still to see the light of the day.

In the last twenty years commutative algebra has undergone an inten-
sive development. However, to the best of our knowledge, no systematic
account of this subject has been published in book form since the appear-

ance in 1935 of the valuable Ergebnisse monograph ‘“Idealtheorie” of
v
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W. Krull. As to that monograph, it has exercised a great influence on
research in the intervening years, but the condensed and sketchy character
of the exposition (which was due to limitation of space in the Ergebnisse
monographs) made it more valuable to the expert than to the student
wishing to study the subject. In the present book we endeavor to give
a systematic and—we may even say—leisurely account of commutative
algebra, including some of the more recent developments in this field,
without pretending, however, to give an encyclopedic account of the subject
matter. We have preferred to write a self-contained book which could
be used in a basic graduate course of modern algebra. It is also with an
eye to the student that we have tried to give full and detailed explanations
in the proofs, and we feel that we owe no apology to the mature mathema-
tician, who can skip the details that are not necessary for him. We have
even found that the policy of trading empty space for clarity and explicit-
ness of the proofs has saved us, the authors, from a number of erroneous
conclusions at the more advanced stages of the book. We have also tried,
this-time with an eye to both the student and the mature mathematician,
to give a many-sided treatment of our topics, not hesitating to offer several
proofs of one and the same result when we thought that something might
be learned, as to methods, from each of the proofs.

The algebro-geometric origin and motivation of the book will become
more evident in the second volume (which will deal with valuation theory,
polynomial and power series rings, and local algebra; more will be said of
that volume in its preface) than they are in this first volume. Here we
develop the elements of commutative algebra which we deem to be *of
general and basic character. In chapter I we develop the introductory
notions concerning groups, rings, fields, polynomial rings, and vector spaces.
All this, except perhaps a somewhat detailed discussion of quotient rings
with respect to multiplicative systems, is material which is usually given in
an intermediate algebra course and is often briefly reviewed in the begin-
ning of an advanced graduate course. The exposition of field theory
given in chapter II is fairly complete and follows essentially the lines of
standard modern accounts of the subject. However, as could be expected
from algebraic geometers, we also stress treatment of transcendental ex-
tensions, especially of the notions of separability and linear disjointness (the
latter being due to A. Weil). The study of maximally algebraic subfields
and regular extensions has been postponed, however, to Volume II (chap-
ter VII), since that study is so closely related to the question of ground’
field extension in polynomial rings.
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Chapter IIT contains classical material about ideals and modules in
arbitrary commutative rings. Direct sum decompositions are studied in
detail. The last two sections deal respectively with tensor products of
rings and free joins of integral domains. Here we introduce the notion
of quasi-linear disjointness, and prove some results about free joins of inte-
gral domains which wé could not readily locate in the literature.

With chapter IV, devoted to noetherian rings, we enter commutative
algebra proper. After a preliminary section on the Hilbert basis theorem
and a side trip to the rings satisfying the descending chain condition, the
first part of the chapter is devoted mostly to the notion of a primary repre-
sentation of an ideal and to applications of that notion. We then give a
detailed study of quotient rings (as generalized by Chevalley and Uzkov).
The end of the chapter contains miscellaneous complements, the most im-
portant of which is Krull’s theory of prime ideal chains in noetherian rings.
An appendix generalizes some properties of the primary representation to
the case of noetherian modules.

Chapter V begins with a study of integral dependence (a subject which
is nowadays an essential prerequisite for almost everything in commutative
algebra) and includes the so-called “going-up” and ‘“‘going-down” the-
orems of Cohen-Seidenberg and the normalization theorem. (Other varia-
tions of that theorem will be found in Volume II, in the chapter on poly-
nomial and power series rings.) W ith Matusita we then define a Dedekind
domain as an integral domain in which every ideal is a product of prime
ideals and derive from that definition the usual characterization of Dede-
kind domains and their properties. An important place is given to the
study of finite algebraic field extensions of the quotient field of a Dedekind
domain, and the degree formula 3eifi = 7 is derived under the usual (and
necessary) finiteness assumptions concerning the integral closure of the
given Dedekind domain in the extension field. This study finds its natural
refinement in the Hilbert ramification theory (sections 9 and 10) and in
the properties of the different and discriminant (section 11). The chap-
ter closes with some classical number-theoretic applications and a generali-
zation of the theorem of Kummer. The properties of Dedekind domains
give us a natural opportunity of introducing the notion of a valuation (at
least in the discrete case) but the reader will observe that this notion is
introduced by us quite casually and parenthetically, and that the language
of valuations is not used in this chapter. We have done that deliberatelv
for we wished to emphasize the by now well-known fact that while i’ s
and valuations cover substantially the same ground in the classical case
(which, from a geometric point of view, is the case of dimension 1), the
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domain in which valuations become really significant belongs to the theory
of function fields of dimension greater than 1.

The preparation of the first volume of this book began as a collaboration
between the senior author and our former pupil and friend, the late Irving
S. Cohen. We extend a grateful thought to the memory of this gifted
young mathematician.

We wish to acknowledge many improvements in this book which are
due to John Tate and Jean-Pierre Serre. We also wish to thank heartily
Mr. T. Knapp who has carefully read the manuscript and the galley proofs
and whose constructive criticisms have been most helpful.

Thanks are also due to the Harvard Foundation for Advanced Research
whose grant to the senior author was used for typing part of the manu-
script. Last but not least, we wish to extend our thanks to the D. Van
Nostrand Company for having generously cooperated with our wishes in
the course of the printing of the book.*

PREFACE TO THE SPRINGER EDITION

In this edition the most important change is the formulation and
strengthening of Theorem 29 (p. 303) and corresponding changes in the
proof of that theorem (pp. 304—305). The chief purpose of this change is to
have in this volume an explicit statement of the very useful formula f’y=
6D, for extensions of Dedekind domains and the full proof of this theorem.
Besides this, several minor misprints have been corrected.

* The work on this volume was supported in part by a research project at Harvard
University, sponsored by the Office of Ordnance Research, United States Army, under
Contract DA-19-020-ORD-3100.
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I. INTRODUCTORY CONCEPTS

§ 1. Binary operations. Let G be an arbitrary set of elements
a,b,c,---. Byabinary operation in GG is meant a rule which associates
with each ordered pair (a, b) of elements of G a unique element ¢ of the
same set G. A binary operation can therefore be thought of as a single-
valued function whose domain 1s the set of all ordered pairs (a, b) of
elements of G and whose range is either G itself or some subset of G.
We point out explicitly that if a and b are distinct elements of G, then
the elements of G which are associated with the ordered pairs (a, ) and
(b, @) may very weil be distinct.

In group theory, and in algebra generally, it is customary to denote
by a-b or ab the element which is associated with (a, &) under a given
binary operation. The element ¢ = ab is then called the product of a
and b, and the binary operation itself is called multiplication. When the
term ‘‘ multiplication” is used for a binary operation, it carries with it
the implication that “if a € G (read: a is an element of G) and be G,
then also abe G.”  We shall often express this property: by saying that
G is closed under the given multiplication.

Let G be a set on which there is given a binary operation, which we
write as multiplication. The operation is said to be associative if
(ab)e = a(bc) for any three elements a, b, c of G.  T'wo elements a and b
of G are said to commute if ab = ba, and the operation is said to be
commutative if any two elements of G commute.

We assume henceforth that the operation in question is associative.
It is then a simple matter to define inductively the powers of an element
of G and to prove the usual rules of exponents. Namely, if a € G and
if n 1s a positive integer, we define a! = a; if n > 1, a"» = a*'a. We
then have for any positive integers m and n:

(1) ama" = amtn,
@ (amy = am.

For fixed m, one can proceed by induction on 7, observing that these
1
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rules hold b} definition for » = 1. DMoreover, if a and b are two
elements of & which commute, then so do any powers of @ and 4, and

(3) (aby" = ambn.

An identity element in G is an element ¢ in G such that ea = ae = a
forall ain ¢. If G has an identity ¢, then it has no other. Forife is
also an identity, then e = ¢¢’ = ¢'. Moreover, we can now define a° to
be ¢, and the foregoing three rules trivially hold for arbitrary non-
negative exponents.

We now assume that G has an identity e. If a € G, an tnverse of a is
an element ¢” in G such that a'a = aa’ = ¢ If a” is also an inverse of
a, then @" = a"e = a"(aa’) = (a"a)a’ = e¢a’ = a’. 'Thus the inverse of
a (if it exists at all} is unique. If a possesses an inverse @', then negative
powers of a can also be defined. Namely, we observe that

am = q"t'q’

for all non-negative m, and we take this as an inductive definition for
negative m. 'Thusa™a = a™*'forallm. Therule(1)above is then true
for any fixed m (positive or negative), provided n = 1; it can be proved
for arbitrary positive n by induction from#n — 1 to n and for negative
n by induction from n + 1 ton. Since, therefore, ama—™ = ¢ = a—™a™,
we observe that @™ has @™ as inverse, sothat (a™)” is defined for every n.
Rule (2) can now be proved by the two inductions used for (1). From
the definition we have that a—! = a’, and we shall always use a—! for the
inverse of a (if it exists). If a and b both have inverses, then so does ab,
and (ab)~! = b~'a~*'. If, moreover, a and b commute, then so do any
powers of a and b, and (3) holds for arbitrary n.

The product of n elements a,,- - -, a, of G is inductively defined as
follows:

n n—1
[la, =a, ifn=r1, I (II )a,, ifn > 1.
i=1 i= '
This product will be denoted also by @,a,- - - a,. From the associativity
of multiplication in G, we can prove the following general associative
law, which states that the value of a product is independent of the
grouping of the factors:

Let ny, ny, - - -, n, be integers such that 0 =ny < n; < -- - < n, = n.
Then

n;

ﬂ( f[ “k)=£llaf'

J=1 \k=nj_1+1

This is clear for n = 1; hence we assume it proved for n — 1 and
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prove it for n factors. The formula being trivial for 7 = 1, we may
assume r > 1. Then

r nj
(71
J=1\k=nj_1+1

= [tl(z.-,,nj ak)] [( "ﬁl ak)a,,} (by definition)

j=1 j—1+1 k=n,_1+1
k= ] el 1 oy
= [H ( 11 a,,)] [ 11 ak:l ta, (by associativity)
1 i=1 k=n;_;1+1 k=n,_1+1 )
2=t 7 \ ; '
== { 1 a; Jga" (by definition and induction hypothesis)
i=1

= "Ia,- (by definition).

This computation is valid unless n,_; = n — 1; the modification neces-
sary in this case is left to the reader.

If all.a; = a, then H a; = a*, and (1) and (2) are consequences (for

1=1

positive exponents) of the general associative law.

§ 2. Groups

. DEFINITION. A set G which is closed under a given multiplication
ts called a GROUP if the following conditions (GROUP AXIOMS) are satisfied:

G,. The set G is not empty.
G, Ifa, b, c €G, then (ab)c = a(bc) (ASSOCIATIVE LAW).
Gj,.  There exists in G an element e such that

(1) For any element a in G, ea = a.
(2) For any element a in G there exists an element a' in G such
that a’'a = e.

In view of axiom G, and the general associativity law proved above,
we can write the product of any (finite) member of elements of G without
inserting parentheses.

We proceed to show that e is an identity in G, and that for every element a
has an inverse. 1f a is given, then by G, (2), there exists an @’ such that
a'a = ¢, and there exists an @” such that a"a’ = e. Then aa’ = ¢(aa’)
= (a"a’)(aa’) = a"(a'a)a’ = a"ea’ = e; this, together with a'a = e,
shows that a’ is an inverse of a, provided that e is an identity. But this
is immediate, for ea = a by G; (1), and ae = a(a’'a) = (aa')a = ea = a.
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Since e is an identity in G and a’ an inverse of g, it follows that both are
uniquely determined. As mentioned in the preceding section, the
inverse of a will be denoted by a—1.

If a and b are elements of a group G, then each of the equations ax = b,
xa = b, has one and only one solution. Consider, for instance, the
equation ax = b. Multiplication on the left by a—?! yields x = a—1b as
the only possible solution, and direct substitution shows that a—1!5 is
indeed a solution. Similarly it can be seen that x = ba—! is the only
solution of the equation xa = b.

An immediate consequence of the uniqueness of the solution of each
of the above equations is the (right or left) cancellation law: if ax = ax’
or if xa = x'a, then x = «x'.

The solvability of both equations ax = b, xa = b is equivalent, in the
presence of G and G,, to axiom G,.  For if we assume the solvability of
the:foregoing equations and if we assume furthermore G, and G,, then
we can prove G, as follows:

We fix an element ¢ in G and we denote by e a solution of the equation
x¢ = ¢. If now ais any element of G, let b be a solution of the equation
cx =a. We will have’ then ea = ¢(ch) = (ec)b = ¢b = a, which
establishes G, (1). As to G4(2), it is an immediate consequence of the
solvability of the equation xa = e.

In practice, when testing a given set G against the group axioms, it is
sometimes the case that the solvability of the equations ax = b, xa = &
follows more or less directly from the nature of the given binary opera-
tionin G. 'The task of proving that G is a group can therefore sometimes
be simplified by using the solvability condition just stated rather than
axiom Gg.

A group which contains only a finite number of elements is called a
finite group. By the order of a finite group is meant the number of
elements in the group.

It may happen that a group G consists entirely of elements of the
form a", where a is a fixed element of G, and 7 is an arbitrary integer,
= 0. If this is the case, G is called a cyclic group, and the element a is
said to generate G.

§ 3. Subgroups. Given two groups G and H, denote by - and o the
group operations in G and in H respectively. We say that / is a sub-
group of G if (1) H is a subset of G and (2) @b = ao b for any pair of
elements @, b in H.

Let H be a subgroup of G and let ¢ and e’ be the 1dent1ty elements of
G and H respectively. We have ¢'-¢' = ¢’ oe’ =¢' and ¢-e =¢.
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Hence ¢'-¢' = ¢’ -¢, and therefore, by the cancellation law which holds
in G, ¢ = e. We thus see that the identity element of a gioup G belongs
to any subgroup H of G (and is necessarily also the identity of H).

If H is a subgroup of G we shall not use different symbols (such as

and o) to denote the group operations in G and H respectively. Both
operations will be denoted by the same symbol, say, - oro.

Given a group G and a non-empty subset H, of .G, there is a very
simple criterion for H, to be the set of elements of a subgroup of G.
Namely, we have the following necessary and sufficient condition: if
a,be Hy, then ab-*e H,. This condition is obviously necessary. On
tbe other hand, if this condmon 1s satisfied, then we have in the first
place that H contains the identity e of G (if a is any element of the non-
" empty set HO, then e = a-a~'e€ H,). It follows that if ae H, then
also a~le Hyfa '=¢e-a'eH,), and if a,beH, then a b=
a-(b-Y)~'e H,. Thus H, is indeed a group H with respect to the
group operation in G, and this group H is a subgroup of G.

Let G be an arbitrary group and let H be a subgroup of G. If ais
any element of G, we denote by Ha the set of elements of G which
are of the form ha, h € H, and we call this set a right coset of H. In a
similar fashion, we can define /left cosets aH of H. If multiplication in
G is commutative (§ 1), then any right coset is also a left coset: Ha and
aH are identical sets.

Let Ha and Hb be two right cosets of H in G, and suppose that these
two cosets have an element ¢ in common: ¢ = hya = hyb; hy, hye H.
Then b = h,~'h,a, and for any element % of H we have hb =
(hhy='h,)a € Ha (since H is a subgroup of G and hence hh,~'h, € H).
Thus Hb C Ha; and similarly we can show that Ha C Hb. Therefore
Ha = Hb.

It follows that two right cosets Ha and Hb are either disjoint (that is,
have no elements in common) or coincide. A similar result holds for
left cosets. Note that a € Ha, for H contains the identity of G. Hence
every element of G belongs to some right (or left) coset.

H is said to be a normal (or invariant) subgroup of G if Ha = aH for
every ain G. An equivalent property is the following: for every a in G
and every # in H, the element a='ha belongs to H.

Suppose now that G is a finite group of order #, and let m be the order
of H. Every right coset Ha of H contains then precisely m elements (if
hy,, hye H and h, 7 h,, then h,a 5 h,a). Since every element of G
belongs to one and only one right coset, it follows that m must be a
divisor of # and that #n/m is the number of right cosets of H. We have
therefore proved that if G is a finite group, then the order m of any
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subgroup H of G divides the order n of G. 'The quotiernt n/m is called the
index of H in G. ]

If a is an arbitrary element of a group G, the elements a”, n any
integer = 0, clearly form a subgroup H of G. We call H the cyclic
subgroup generated by the element a. 1f this subgroup H is finite, say of
order m, then m 1s called the order of the element a; otherwise, a is said
to be of infinite order.

Let a be an element of G, of finite order m. There exist then pairs
-of distinct integers n, n’ such that a* = & (otherwise the cyclic group
generated by a would be infinite). From a” = a” follows a"~" = 1,
whence there exist positive integers v such that @ = 1. Let u be the
smallest of these integers. Then 1, a, a? -- -, a*~! are distinct ele-
ments, while if z# is any integer and if, say, n =qu + n, 0 = n' < p,
then

n a" = a7 = (a*)?-a" = a".
It follows that the cyclic group generated by a consists precisely of the
w elements 1, a, a?, - - -, a#*~1, and hence p. = m. Thus the order of a

is also.the smallest positive integer m such that a™ = 1.

From (1) it follows that a” = 1 if and only if n’ = 0, that is, if and
only if # is a multiple of m(= p).

It is clear that if G is a finite group, then every element a of G has
finite order, and that the order of a divides the order of G.

§ 4. Abelian groups. Let G be a set with an associative multiplica-
tion. As defined in § 1, the multiplication is said to be commutative if
ab = ba for any elements @, b in G. In such a case it is permissible to
change freely the order of the factors in a product a,a, - - a,. That
is to say, we have the general commutative law, which can be formally .
stated as follows:

Let ¢ be a permutation of the integers {1,2,---,n}. Then

n n
H ai = H a@(i)'
1=1 =1

The proof is by induction and may be left to the reader.

A group G in which the group operation is commutative is said to be
commutative or abelian. The group operation is then often written
additively; that is, we write a + b instead of @b and Y a; instead of [ ]a,.
The element a + b is called the sum of a and b. The identity element
is denoted by 0 (zero) and the inverse of @ by — a. Correspondingly
one writes na instead of @*, and the rules for exponents take the form

(1 ma + na = (m + n)a,
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(2) m(na) = (mn)a,
3) n(a + b) = na + nb,
* = (na) = (= ma.

~ The last equation is a paraphrase of the statement (in the multiplicative
" notation) that the inverse of a" is a=". The equation xa = b, which in
the abelian case is equivalent to the equation ax = b, assumes then the
form x + a = b. Its unique solution 4 4+ (— a) is denoted by 6 — a
and is called the difference of b and a. The binary operation which
associates with the ordered pair (q, b) the difference b — a is called
subtraction.

§ 5. Rings

DEfFINITION.. A set R in which two binary operations, + (addition)
and - (multiplication), are given is called a RING if the following conditions -
(RING AX1OMS) are satisfied:

R,. R is an abelian group with respect to addition.

R,. If a, b, ce R, then a(bc) = (ab)c.

R, Ifa,b,ceR, then alb+ c) = ab + acand (b + c)a = ba + ca

(distributive laws).
In conformity with the additive notation for abelian groups (§4) the
identity element of R (regarded as an additive group) is denoted by 0,
and the (additive) inverse of an element a is denoted by —- a. Therefore
the following relations hold in any ring R:
O+a=a+ 0=aq,
a4+ (—a)=(—a)+a=0,

_(_a)=a)
a+ b+c)=(a+bd)+c¢
a+b=15b+ a

The abelian group which, according to the ring axiom R, any ring R
forms with respect to addition is called the additive group of the ring.

A ring R is called commutative if multiplication is commutative in
R: ab = ba for any elements a, b in R.

The distributive laws hold also for subtraction:

(1) a(b — ¢) = ab — ac; (b —c)a=ba — ca.
To prove, for instance, the first of these two relations, we have to show

that a(b — ¢) + ac = ab. This, however, follows directly from the
first distributive law R,, since (b — ¢) +¢ = b.
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For b = ¢, relations (1) yield the following important property of the
element 0:

(2) a0 = 0a = 0,
forall ain R. If we putin (1) b = 0 we find
a(—¢) = —ac; (— ¢)a= — ca,

and if in the first of these relations we replace @ by — a we obtain
(— a)(— ¢) = — (— a)c = — (— ac), whence

3) (= a)f(— o) = ac.

An element a of R is called a left (or right) zero divisor if there exists
in R an element b different from zero such that ab = 0 (or ba = 0). By
(2) the element 0 is always both a left and right zero divisor whenever R
contains elements different from zero. However, it is convenient to
regard 0 as a zero divisor also in the trivial case of a ring R which consists
only of the element zero (nullring). By a proper zero divisor is meant a
zero divisor which is different from 0. Hence a ring R has proper zero
divisors if and only if it is possible to have in R a relation ab = 0 with
both a and b different from zero. In the sequel we shall call R a ring
without zero divisors if R has no proper zero divisors. An element of R
which is not a zero divisor will be called a regular element. In particu-
lar, the element 0 is not a regular element.

§ 6. Rings with identity. If there exists in the ring R an element
which is an identity with respect to multiplication, then, by a remark
mnade in § 1, this element is uniquely determined. If R is not a nullring,
we shall refer to this element as the identity of the ring and we shall
denote it by the symbol 1. In such a ring, multiplicative inverses are
referred to simply as inverses. Hence an inverse of a is an element a’
such that a’a = 1 and aa’ = 1; it is unique according to § 1 and will be
denoted by'a~1.

The element 1 is its own inverse. Similarly it follows from (3) that
— 1 is its own inverse.

The elements O and 1 are distinct elements of R. For we have agreed
that R is not a nullring, and if a 3% 0, then 20 = 0 and al = a % 0,
whence 0 3¢ 1. From this it follows that the element 0 has no inverse,
since for any element @ in R we have a0 = 0a = 0 % 1. Consequer:tly
a ring (which is not a nullring) is definitely not a group with respect to
multiplication.

An element of R is called a unit if it has an inverse. The elements 1
and — 1 are units. The ring of integers is the simplest example of a



