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Preface

(A) These notes provide an introduction to some topics in orbit equivalence
theory, a branch of ergodic theory. One of the main concerns of ergodic theory
is the structure and classification of measure preserving (or more generally
measure-class preserving) actions of groups. By contrast, in orbit equivalence
theory one focuses on the equivalence relation induced by such an action, i.e..
the equivalence relation whose classes are the orbits of the action. This point of
view originated in the pioneering work of Dye in the late 1950’s, in connection
with the theory of operator algebras. Since that time orbit equivalence theory
has been a very active area of research in which a number of remarkable results
have been obtained.

Roughly speaking, two main and opposing phenomena have been discov-
ered, which we will refer to as elasticity (not a standard terminology) and
rigidity. To explain them, we will need to introduce first the basic concepts of
orbit equivalence theory.

In these notes we will only consider countable, discrete groups I'. If such a
group I” acts in a Borel way on a standard Borel space X, we denote by Ep
the corresponding equivalence relation on X:

cEfyeIyel(y-z=y).

If 1z is a probability (Borel) measure on X, the action preserves pu if pu(y-A) =
1(A), for any Borel set A C X and v € I'. The action (or the measure) is
ergodic if every ['-invariant Borel set is null or conull.

Suppose now " acts in a Borel way on X with invariant probability mea-
sure ;1 and A acts in a Borel way on Y with invariant probability measure v.
Then these actions are orbit equivalent if there are conull invariant Borel sets
AC X, BCY and a Borel isomorphism 7 : A — B which sends p to v (i.e.,
w0 = v) and for r.y € A:

J'E}\-' TR=" 7T(I)E:\ m(y).

We can now describe these two competing phenomena:
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(1) Elasticity: For amenable groups there is exactly one orbit equivalence
type of non-atomic probability measure preserving ergodic actions. More pre-
cisely, if I'; A are amenable groups acting in a Borel way on X, Y with non-
atomic, invariant, ergodic probability measures pu, v, respectively, then these
two actions are orbit equivalent. This follows from a combination of Dye’s
work with subsequent work of Ornstein-Weiss in the 1980’s. Thus the equiv-
alence relation induced by such an action of an amenable group does not
“encode” or “remember” anything about the group (beyond the fact that it
is amenable). For example, any two free, measure preserving ergodic actions
of the free abelian groups Z™,7Z" (m # n) are orbit equivalent.

(11) Rigidity: As originally discovered by Zimmer in the 1980’s, for many
non-amenable groups I we have the opposite situation: The equivalence re-
lation induced by a probability measure preserving action of I" “encodes” or
“remembers” a lot about the group (and the inducing action). For example, a
recent result of Furman, strengthening an earlier theorem of Zimmer, asserts
that if the canonical action of SL,(Z) on T" (n > 3) is orbit equivalent to
a free, non-atomic probability measure preserving, ergodic action of a count-
able group I, then I" is isomorphic to SL,(Z) and under this isomorphism
the actions are also Borel isomorphic (modulo null sets). Another recent re-
sult, due to Gaboriau, states that if the free groups F,,, F, (1 < m,n <)
have orbit equivalent free probability measure preserving Borel actions, then
m = n. (This should be contrasted with the result mentioned in (I) above
about Z™,Z".)

(B) These notes are divided into three chapters. The first, very short,
chapter contains a quick introduction to some basic concepts of ergodic theory.

The second chapter is primarily an exposition of the “elasticity” phe-
nomenon described above. Some topics included here are: amenability of
groups, the concept of hyperfiniteness for equivalence relations, Dye’s The-
orem to the effect that hyperfinite equivalence relations with non-atomic, in-
variant ergodic probability measures are Borel isomorphic (modulo null sets),
quasi-invariant measures and amenable equivalence relations, and the Connes-
Feldman-Weiss Theorem that amenable equivalence relations are hyperfinite
a.e. We also include topics concerning amenability and hyperfiniteness in the
Borel and generic (Baire category) contexts, like the result that finitely gener-
ated groups of polynomial growth always give rise to hyperfinite equivalence
relations (without neglecting null sets), that generically (i.e., on a comea-
ger set) every countable Borel equivalence relation is hyperfinite, and finally
that, also generically, a countable Borel equivalence relation admits no invari-
ant Borel probability measure, and therefore all generically aperiodic, non-
smooth countable Borel equivalence relations are Borel isomorphic modulo
meager sets.

The third chapter contains an exposition of the theory of costs for equiv-
alence relations and groups, originated by Levitt, and mainly developed by



Preface VII

Gaboriau, who used this theory to prove the rigidity results about free groups
mentioned in (II) above.

(C) In order to make it easier for readers who are familiar with the material
in Chapter IT but would like to study the theory of costs, we have made
Chapter IIT largely independent of Chapter I1. This explains why several basic
definitions and facts, introduced in Chapter II (or even in Chapter I), are again
repeated in Chapter I11. We apologize for this redundancy to the reader who
starts from the beginning.

Chapter II grew out of a set of rough notes prepared by the first author in
connection with teaching a course on orbit equivalence at Caltech in the Fall of
2001. It underwent substantial modification and improvement under the input
of the second author, who prepared the current final version. Chapter III is
based on a set of lecture notes written-up by the first author for a series of
lectures at the joint Caltech-UCLA Logic Seminar during the Fall and Winter
terms of the academic year 2000-2001. Various revised forms of these notes
have been available on the web since that time.

(D) As the title of these notes indicates, this is by no means a comprehen-
sive treatment of orbit equivalence theory. Our choice of topics was primarily
dictated by the desire to keep these notes as elementary and self-contained as
possible. In fact, the prerequisites for reading these notes are rather minimal:
a basic understanding of measure theory, functional analysis, and classical
descriptive set theory. Also helpful, but not necessary, would be some fa-
miliarity with the theory of countable Borel equivalence relations (see, e.g.,
Feldman-Moore [FM], Dougherty-Jackson-Kechris [DJK], and Jackson-Kech-
ris-Louveau [JKL]).

Since this is basically a set of informal lecture notes, we have not attempted
to present a detailed picture of the historical development of the subject nor
a comprehensive list of references to the literature.

Acknowledgments. The authors would like to thank D. Gaboriau, G.
Hjorth, A. Louveau, J. Melleray, J. Pavelich, O. Raptis, S. Solecki, B. Velick-
ovic, and the anonymous referees, for many valuable comments and sugges-
tions or for allowing us to include their unpublished results. Work on this book
was partially supported by NSF Grant DMS-9987437 and by a Guggenheim
Fellowship.

Los Angeles Alexander S. Kechris
June 2004 Benjamin D. Miller



Contents

IT

I11

Orbit Equivalence ........ .. .. .. .. .. .. ... . . . . .. 1
1 Group Actions and Equivalence Relations ......... .. ... .. 1
2 Invariant Measures . .......... .. i 3
3 Ergodicity ... ... o 4
4 Isomorphism and Orbit Equivalence ........ .. ... ... ... ... 6
Amenability and Hyperfiniteness .......................... 7
5 Amenable Groups . ........ .. 7
6 Hyperfiniteness. . ... ... . . 17
7 Dye's TREOTEM « s s s st cws vwsmsvminssmsmn swonasssnsnsonsas 23
8 Quasi-invariant Measures . ...... ... ... ... o o 33
9  Amenable Equivalence Relations .......................... 36
10 Amenability vs. Hyperfiniteness ............. .. ... ....... 43
11 Groups of Polynomial Growth.......... ... ... .. ... .. ... 47
12 Generic Hyperfiniteness . ........ ... o i 50
13 Generic Compressibility ....... ... .. . . o 51
Costs of Equivalence Relations and Groups ................ 55
14 Preliminaries. ... ... 55
15 Countable Borel Equivalence Relations ..................... 56
16  More on Invariant Measures ............ .. ... .. ........... 57
17 Graphings of Equivalence Relations . ........ ... ... .. . .. 58
18 Cost of an Equivalence Relation ............. ... ... ..... 59
19 Treeings of an Equivalence Relation............. ... ... .. 65
20  The Cost of a Smooth Equivalence Relation ................ 66
21 The Cost of a Complete Section ........................... 63
22 Cost and Hyperfiniteness .. ...... .. ... . . .. 69
23 JOINS . oo 73
24 Commuting Equivalence Relations ......................... 76
25 Subequivalence Relations of Finite Index ................... 31
26 Cheap Equivalence Relations........... ... .. ... ... .... 84



X Contents
27  Free and Amalgamated Joins ........ .. ... oo 85
28 Costs and Free Actions. .. ..., 98
20 Cost Of 8 GroWNp :sssmsensns cnsms s@ianing sasms s8i%s susmn i 107
30 Treeable GroupPS. ..ot v e 113
31 Cost and Amenable Groups. . ........ ... ... .. ... 115
32 Generating Subgroups....... ... ... . oo 117
33 Products ssvss cwiassmenmims suims cmsmnams sREE $REEE (5 IS s 117
34 Subgroups of Finite Index . ...... ... ... ... .. . ... 119
35 Cheap GrouPS . vttt e 120
36 Free and Amalgamated Products . ...... ... ... ... .. .. 123
37  HNN-extensions . ............oi .. 125
38 A List of Open Problems ............ ... . ... ........... 126

References . ... ... .. ... . . 129

Index . ... 131



|

Orbit Equivalence

1 Group Actions and Equivalence Relations

Suppose X is a standard Borel space and [ is a countable (discrete) group.
A Borel action of I" on X is a Borel map (v, x) — 7 - x such that

l. Ve e X (1.2 =u=x), and
2.Vre XVyi,ve € I'(vi- (72 - x) = (M172) - x).

We also say that X is a Borel I'-space. Given x € X, the orbit of x is
'e={y-xz:~vel},
and the stabilizer of x is given by
In={yel:~v x=uzr}
We say that the action of I" on X is free if
Vee X (I, ={1}),

that is, if 4 - r # r whenever v # 1. The equivalence relation induced by the
action of I is given by

.I’E}“(’.I/ SIyvel (yv-r=y),
and the quotient space associated with the action of I' is
X/I'=X/Ef ={I'x:2€X}.
Example 1.1. The (left) shift action of I on X' is given by
7 p(d) = p(v ).

For example, when I' = Z and X = 2 = {0, 1}, we have
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m-p(n)=pn—im),

so that )
pEZ q & Im € ZVk € Z(p(k) = q(m + k)).

Similarly, the right shift of I" on X! is given by

v - p(d) = p(67),

and the conjugation action of I' on X! is given by
v p(d) = p(y ')

Example 1.2. If X = (G is a standard Borel group and I' C G, then I acts
on GG by left translation, that is,

Y-9=79-
Here the orbit of g € GG is the right coset ['g. so that
gEﬁh < I'g=1h

and the quotient space GG/I" coincides with the space of right cosets of I'.
For example, take G = SO(3), the compact metrizable group of 3-dimensional
rotations, and I" the copy of £} (the free group on 2 generators) sitting inside
of SO(3). whose two generators are given by rotation by cos™!(1/3) around k
and rotation by cos™!'(1/3) around i. Then the left translation action gives a
Borel action of [, on SO(3). Also, Fy acts on S%, the unit sphere in R? (this
action is related to the geometrical paradoxes of Hausdorff-Banach-Tarski; see

[W)).

An equivalence relation E on X is (finite) countable if its equivalence
classes are (finite) countable. We use [E] to denote the group of Borel au-
tomorphisms of X whose graphs are contained in E. We use [[E]] to denote
the set of partial Borel automorphisms of X whose graphs are contained in
E. (A partial Borel automorphism is a Borel bijection ¢ : A — B, where
A = dom(¢). B = rmg(¢) are Borel subsets of X. As usual the graph of a
function is the set graph(f) = {(x,y) : f(x) = y}.)

Theorem 1.3 (Feldman-Moore [FM]). Let E be a countable Borel equiv-
alence relation on X. Then there is a countable group I' and a Borel action
of I on X such that E = EX. Moreover, I' and the action can be chosen so
that

rEyedgel(¢*=1& g -r=y).

Proof. As E C X? has countable sections. it follows from Theorem 18.10

of [K] that
E= || F,

neN
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for some sequence {F,, }, ., of Borel graphs. We can assume that F,, N F,, =0
if n# m. Let F,,,, = F,, N F,.', where for F C X2,

F' = {(y,x): (x,y) € F}.
Since X is Borel isomorphic to a subset of R, it follows that X2\ Ay, where
Ax ={(x.x) : r € X}, is of the form
X2\ Ax = | J(4, x By).
pEN

where A, B, are disjoint Borel subsets of X. It follows that £, ,, , = £, m N
(A, x B,) is of the form

}"an.p = graph(fu.m.p)-
for some Borel bijection f,, .5 Dyongp — B, Where
By s 0 R s = 0
Now define a sequence {g, m p,} of Borel automorphisms of X by

frhrrup(-r) lf xr e Dn.nup-
.(/HJH.[)(I) — fnirln.p(‘r) if £ E RH.HI.[}-
€T otherwise.

Note that g, . is an involution and

B= U gl'aph(gu.m .p)'

thus the induced action of I" = (g, ) on X is as desired. -

2 Invariant Measures

By a measure on a standard Borel space X we mean a non-zero o-finite Borel
measure on X. If u(X) < oo we call pu finite, and if pu(X) = 1 we call ¢ a
probability measure. Given a countable Borel equivalence relation £ on X, we
say that p is F-invariant if

Vi€ [E)(fou = o).
where f,pu(A) = p(f1(A)).

Proposition 2.1. The following are equivalent:

(a) i is E-invariant,

(b) pu is I'-invariant, whenever I" is a countable group acting in a Borel
fashion on X such that E = E}X .

(c) yu is I'-invariant for some countable group I' acting in a Borel fashion
on X such that E = Ep, and

(d) %6 € [[B]] (u(dom(9)) = p(rmg(@)),
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Proof. The proof of (d) = (a) = (b) = (c¢) is straightforward. To see
(c) = (d), simply observe that, if dom(¢) = A,rng(¢) = B, there is a Borel
partition A = |J A,, and a sequence {v,} C I' such that for z € A,, ¢(x) =
Tn - Z, s0 that B = |J7n « An. -

3 Ergodicity

A measure p is E-ergodic if every E-invariant Borel set is null or conull. A
measure [ is ergodic with respect to an action of a group I if it is ergodic for
the induced equivalence relation.

Example 3.1. Let p be the product measure on X = 2, where I is a count-
ably infinite group, and 2 has the (1/2,1/2)-measure. For each finite S C I
and s: .S — 2, put .

Ny ={f: fldom(s) = s},

noting that the A;’s form a clopen basis for 2" and w{Ne) = 9—ldom(s)| where
|A| = card(A). As
e Nﬁ' = Ny-sa

it follows that p is shift-invariant. To see that p is ergodic with respect to the
shift, we will actually show the stronger fact that it is mizing, that is,

lim p(y- AN B) = p(A)u(B),

¥—00
for A, B C X Borel. (That mixing implies ergodicity follows from the fact that,
when A = B is invariant, mixing implies p(A) = u(A)?, thus p(A4) € {0,1}.)
Given A, B C X and € > 0, we can find A’, B/, each a finite union of basic

clopen sets, such that
w(AAA"), u(BAB') < e,

where A denotes symmetric difference. Thus, it suffices to show the mixing
condition when A, B are finite unions of basic clopen sets. Say A is supported
by S and B by T, where S,T C I are finite. Then off a finite set of s,
~v-SNT =0, thus v- A, B are independent and

pw(y - AN B) = p(y- A)pu(B)
= p(A)p(B).

Example 3.2. Suppose G is an infinite compact metrizable group, A < ¢
is a dense subgroup, and g is Haar measure on G. For example, we could
take G = ZY and A = Z5". Then A acts by left-translation and g is clearly
invariant. To see that p is ergodic, consider L!(G) and its dual L>=(G). G acts
on LY(G) via left shift, i.e.,

g-p(h) =plg~'h).
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This is a continuous action, i.e., if g, — ¢ in G and p, — p in LY(G), then
n - Pn — ¢-p in LY(G). So, by duality, it induces a continuous action of G
on the unit ball of L>((G), with the weak*-topology, given by

g-Alp) = Alg™" - p).
Now, if A C G is A-invariant, let y4 = A € L>(G), so that
Voe A(d-A=A).
But since A is dense in G and the action is continuous, this means that
Vge G(g-A=A),
or equivalently, that
VgV h (xalg™'h) = xa(h)),
where “V}” means “for pi-almost all.” It follows from Fubini’s T.heOI‘GIIl that
Vihvig (g 'he A he A),
so if u(A) > 0 we can find h € A such that
V.9 (97'"he A heA),
thus p(A) = 1.

It should be noted, however, that translation is not mixing! To see this,
fix 6, € A with §, — ¢ # 1, and let N be a sufficiently small compact
neighborhood of 1 such that N NgN = (). Then

w(NNéo, N)— 0,
while g (N)pu(d, - N) = u(N)? > 0.

For each countable Borel equivalence relation £ on X, let Zr be the set
of invariant probability measures for E, and let £Zp be the set of ergodic,
invariant probability measures for £. Then we have:

Theorem 3.3. (Ergodic Decomposition — Farrell [F], Varadarajan
[V]) Let E be a countable Borel equivalence relation on X. Then Ig,EIg
are Borel sets in the standard Borel space P(X) of probability measures on
X.

Now suppose I, # 0. Then ETr # 0, and there is a Borel surjection
m: X — ELy such that

1. 7 is E-invariant,

2.4f X, ={x :w(x) = e}, thene(X.) = 1 and E|X. has a unique invariant
measure, namely e, and

3.if we Iy, then p= [ w(x) du(x).

Moreover, © is uniquely determined in the sense that, if ©' is another such
map, then {x : w(x) # 7'(x)} is null with respect to all measures in Ip.
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4 Isomorphism and Orbit Equivalence

We say that (X, V), (Y, F) are (Borel) isomorphic (E =g F) if there is a
Borel bijection 7 : X — Y such that

Yo,y € X (eby & w(x)Fr(y)) .

We say that (X, E,p), (Y, F,v) are (Borel almost everywhere) isomorphic if
there are conull Borel invariant sets A C X, B C Y and a Borel isomorphism 7
of (A, E|A) with (B, F|B) such that m,t = v. Note that ergodicity is preserved
under isomorphism. If I" acts in a Borel fashion on X, Y, then the actions are
(Borel) isomorphic if there is a Borel bijection m : X — Y such that

Ve e XVy eI (n(y-x) =7v-n(x)).

Finally, if I" acts in a measure preserving fashion on (X, u), (Y, v), then the
actions are (Borel almost everywhere) isomorphic or conjugate if there are
conull Borel invariant sets A C X, B C Y and a Borel isomorphism 7 of the
actions of I' on A, B such that m.u = v. It is a classical problem of ergodic
theory to classify (e.g., when I' = 7Z) the probability measure preserving,
ergodic actions up to conjugacy. (Recall here the results of Ornstein and oth-
ers.) Actions of I, A on X, Y, respectively, are orbit equivalent if Eff >p E}A/
Similarly measure preserving actions of I') A on (X, p), (Y, v), respectively, are
orbit equivalent if there are conull Borel invariant sets A C X, BC Y and a
Borel isomorphism 7 of EA. Eg with m.u = v.



I1

Amenability and Hyperfiniteness

5 Amenable Groups

Suppose X is a set. A finitely additive probability measure (f.a.p.m.) on X is
a map

it Power(X ) — [0, 1],
where Power(X) = {A : A C X}, such that pu(X) = 1 and u(A U B) =
WA) + pu(B), it AN B = 0. A faa.p.m. pz on a countable group I is left-
tnvariant if

Vv e IVACT (n(vA) = pu(A)),

and a countable group 1" is amenable if it admits a left-invariant f.a.p.m.
Example 5.1. Suppose [ is finite. Then

n(A) = A/
defines a left-invariant f.a.p.m. on I'. thus I is amenable.

Example 5.2. The group I' = Z is amenable. Let U/ be a non-atomic ultra-
filter on N. Then AN v
AN{—n,...,n
(A) = lim ]
l[( ) n—Uu 2n + 1

defines a left-invariant f.a.p.m. on I'. Here lim,, .z a,,, where {a,, } is a bounded
sequence of reals, denotes the unique real a such that for each neighborhood
N of a the set {n:a, € N} is in U.

A mean on I is a linear functional m : [>(I") — C such that

(i) m is positive, i.e., f > 0= m(f) >0, and
(ii) m(1) = 1, where 1 denotes the constant function with value 1.

Proposition 5.3. If mn is a mean, then ||m|| = 1.
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Proof. For f € [>(I'), find o € T such that am(f) = |m(f)|. Then

m(f)] = am(f)
=m(af)
= Re m(«af)
= m(Re af)

< |[Re afl
< laflls
< 1f e

and the claim follows. -

There is a canonical correspondence between means and f.a.p.m.’s, given
by associating to each mean m the f.a.p.m. defined by

w(A) =m(ly),

where 14 = the characteristic function of A, and by associating to each
f.a.p.m. p the mean defined by

m(f) = /f dje.
A mean m is left-invariant if
Wy € D(m(y- f) = m(f)),
where v - f(d) = f(y14). Thus
Proposition 5.4. " is amenable < I' admits a left-invariant mean.
By considering v + ~ 7!, it is easy to see that left-invariance can be
replaced with right-invariance in the definition of amenability. In fact,

Proposition 5.5. " is amenable < I' admats a 2-sided invariant f.a.p.m.

Proof. Let y; be a left-invariant f.a.p.m. on I', define i, (A) = (A1),
and observe that

p(A) = [ (s o)
gives the desired 2-sided invariant f.a.p.m. =

Next we turn to closure properties of amenability.
Proposition 5.6. Suppose I is a countable group.

(i) If I' is amenable and A < I', then A is amenable.

(ii) If N Q1I, then I' is amenable < N,I'/N are amenable. In particular,
it follows that the amenable groups are closed under epimorphic tmages
and finite products.

(i1i) I is amenable & every finitely generated subgroup of 1" 1s amenable.
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Proof. To see (i), let p be a left-invariant f.a.p.m. on I, let T' C I" consist
of one point from every right coset Ay, v € I', and note that

v(A) = p(AT)

is a left-invariant f.a.p.m. on A.
To see (=) of (ii), it remains to check that if I" is amenable, then I'/N is
amenable. But if g is a left-invariant f.a.p.m. for I, then

v(A) =p (U A)

defines a left-invariant f.a.p.m. on I'/N.
To see (<) of (ii), let i be a left-invariant f.a.p.m. on N. Then g induces
a f.a.p.m. uc on each C' € I'/N, given by

ne(A) = p(y 1 A),

where v € (. As p is left-invariant, uc is independent of the choice of v. Now
let v be a left-invariant f.a.p.m. on I'/N, and observe that

AMA) = /,v/N poe(ANC) dv(C)

defines a left-invariant f.a.p.m. on I'.

To see (iii), suppose that {3, },en is an increasing, erhaustive (i.e., whose
union is I") sequence of amenable subgroups of I', let u, be a left-invariant
f.a.p.m. on [, fix a non-atomic ultrafilter &/ on N, and observe that

n(A) = linzll n(ANTY)

defines a left-invariant f.a.p.m. on I'. =

Corollary 5.7. Solvable groups are amenable.

Proof. First, we note that abelian groups are amenable. By Proposition
5.6, it suffices to show that finitely generated abelian groups are amenable.
But all such groups are direct products of finite groups with copies of Z, and
are therefore amenable by Proposition 5.6 and Examples 5.1 and 5.2.

Now suppose G is solvable. Then we can find

{1}:H(J§H1§§Hu:(7‘

such that H, 1 /H; is abelian, for all i < n, and the corollary now follows from
repeated applications of Proposition 5.6. —

dven two sets X,Y C I, we write X ~ Y if there are partitions
Xi,....X, of X and Yq,....Y,, of Y and group elements ~y,...,y, € I
such that v, X; = Y;, for all 1 <i < n. A group I is paradozical if there are
disjoint sets A, B C I such that A ~ B ~ I".



