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Prologue

Abocut fifteen years ago I was asked by the chairman to teach the graduate
course in advanced quantum mechanics. This was the third semester of the quan-
tum sequence and was to include relativistic quantum mechanics as well as an
introduction to quantum field theory. I had intended to begin my discussion with
the Dirac equation and to develop covariant perturbation theory via Green’s func-
tion methods. However, I soon found that the students needed a better grounding
in the related nonrelativistic techniques before lauching into a full relativistic treat-
ment. Thus I developed material on nonrelativistic Feynman diagrams and their
application to electromagnetic processes. Isearched at that time for a suitable text,
but was unable to find any that really fit my needs—Bjorken and Drell’s Relativistic
Quantum Mechanics was excellent for the relativistic aspects but contained no cor-
responding nonrelativistic material; Sakurai’s Advanced Quantum Mechanics was
much better in this regard but used the “wrong” metric; etc. Since I did not wish
to see the students buried into their notebooks trying to keep up with my black-
board work, I developed a set of lecture notes and problems covering this material,
some being substantially based upon a similar course which I had taken from Julius
Ashkin at Carnegie-Mellon University a decade earlier. My notes were duplicated
and handed out to the students.

Since that time, I have taught the course on four or five additional occasions.
Each time I included some new material with additional problems and related notes.
It is these notes and problems which are collected below into what I hope is a
coherent volume. Problems are inserted not at the end of each chapter but rather
in the flow of the discussion. Since this was a graduate course, I have taken the
liberty of assuming a thorough grounding in basic quantum mechanics at the level of
say Merzbacher’s Quantum Mechanics and have used = 1 and ¢ = 1 throughout,
except where they are required for clarity. The charge on the electron is denoted by e
and is taken to be negative — e = —|e|. Contraction of four vectors is accomplished
via the metric tensor

1 0 0 0
o -1 0 o
=10 0 -1 0
0 0 0 -1

ie. A-B = A*B, = Abn,,B” = A°B° — A. B and the conventions of Bjorken
and Drell with respect to Dirac matrices are followed, except for 45 for which the
negative of their definition is chosen. Unit vectors are denoted by a hat symbol, as
are abstract operators, but it should be clear from the context which is which.

There is clearly too much discussed here to be included in a single semester
course, and there is a good deal of material, usually included at the end of each chap-
ter and designated by an asterisk, which is supplementary to the major content—
intended rather to whet the appetite of adventuresome readers. It is my hope,
nevertheless, that other instructors will find useful material herein to supplement
their own presentations of advanced quantum mechanics and that in turn a new
generation of students will be exposed to the excitement which I first felt twenty
five years ago. ‘

Ambherst, Massachusetts
December, 1991
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CHAPTER |
PROPAGATOR METHODS

11 BASIC QUANTUM MECHANICS

The fundamental problem of quantum mechanics is to determine the time devel-
opment of quantum states. That is, given a state vector [¥(0)) at time ¢ = 0, what
is the state at a later time ¢ — |¢(¢))? The answer is provided by the Schrodinger
equation

.0 -
i3 0(0) = Hlw() (1.1)
where H is the Hamiltonian operator. Usually one sees this equation expressed in

terms of the coordinate space projection of the state vector—it.e. the wavefunction
¥(x,t) wheret

¥(z,t) = (z|¥(t)) . (1.2)
The time-evolution of the wavefunction is then given by
.0 s
i (zlv®) = (2| A w)) . (1.3)
In order to evaluate the matrix element on the right we can insert a complete set
of co-ordinate states o
1= [ ey (14)
yielding
igplelvn = [ de' (A ) vy - 15)
at oo ’

Finally we need to interpret the operator matrix element <z|f1 ]z'>. In general, the

Hamiltonian A can be written in terms of kinetic and potential energy compor....ts
as

A= 2’% +V(2) . (1.6)
Here |z >= z|z > with < z|z' >= §(z — 2') so
(2V(#)] ') = V(z) (ale) = V(2)6(z ~ 2') . (L7

In order to represent the kinetic energy piece we can insert a complete set of mo-
mentum states such that p|p >= plp > with < plp’ >= 2x6(p — p’). Then

1= [ Einol (1.8)

! For simplicity of notation, we shall work here in one dimension. However,
generalization to three dimensions is obvious.
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yielding i

(I

%w>=[ L (el £ ole) (19)

Since (z|p) is sitnply a plane wave

(z|p) = e"; (1.10)

we have
z —Ii z’ = /w é—g ieip(:'t’)
2m r 2m
1 / 9P jinte-s") (1.11)
“om 0.1:2
1 /
7 =)

Substitution back into Eq. 1.3 yields

/) .0
i5 (&lv()) = iz ¥(z, 1)

_(_ 1 el ot (1.12)
= (-3 2 +v@) [ de' e~ ) @)
= H(z)y(z,t)
which is the usual version of the Schrédinger equation, where
82
H(z) = 3 37 +V(z) . (1.13)

provides the representation of the operator H in coordinate space. For afree particle
this reduces to the simple form

1 92

Hol@) =~ 527

(1.14)

Time Development Operator

An alternative formulation of this problem is in terms of the time development
operator U/ (¢,t') defined via

Oy = (PO L2t (1.15)
with the boundary condition
Jim, Ult,ty=1 . (1.16)
For the case of a free particle, obeying

i () = Holw() (1.17)
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the solution for b(o)(t, 0)is

0O, 0) = 6(t) exp (—iflot) (1.18)
where
w={5 12} @

is the usual theta function. For example, if

i - a)? _
we find

Y(z,t) =< [T, 0)|¥(0) >= / dz’ < 2|00, 0)jz’ >< z'|$(0) >

- - 1 (z — a)?
— iHo(z - (Ho(x
- of )‘1’(,(13 0)=e ( )‘(21',0,2)1/4 exp (—-——-——40_2 ) {1.21)
. Z " 62" (2 - 0)2) 1
oy nl 2m dz2r P\ T o2 (2102)1/4

Although one could straightforwardly evaluate this power series, it is easier to
note the identity [Bl 68]

8 1 (z-a)®) _ @8 1 (z - a)? ,
b—;;-\—/%exp (- p '*) = '5; -J_;ﬂp(“T) . \1.22)
Then using
8 , N at o
exp (a-g;> fiz) = ,,2__;, = 0zn f(z) = f(z+ ) ‘ (1.23)
we find ‘
g2\ /¢ 1 (z=a)?
Y(z,t) = (-—) ——ee gXP | ] . . (1.24)
| ) (er4it) P\ 40+ i5h)

We note that

)} r- ( (e o) ith o(t) = (02 + —or v 1.25
l‘d«(:t (i) 4‘“ ng(t) w1 ‘7( ) =10+ Amlg? ( . )
which obviously exhibits the canonical spreading experienced by such a wai:(epa.cket.

We can equivalently perform the above calculation in momentum space, where
the time development operator has the simple form

<p [(7(°>(t, :’)! p'> =< plexp(—ip?(t - t')/2m){p’ > 6(t - t')
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V] 2
. P
= exp -i;f;‘-(t—t') < plp’ > 8(t—') = exp —iZ—(t—t)206(p—p )0t ~t')

)

It

we have

(elw(0)) = mexp (-

(oiv@) = [ dz (olo) w0}

. Then o 4o
ploe) = [ T < a0l >< F1v(0) >

e ipz 1
= dz 7 'PF e exp (—
/-oo (23’0’7)1/4

(z—a)?
40?

= (870?)"/* exp (—0?p?) exp (~ipa)

2
= (Svrcrz)ll4 exp (—0‘2p2 —ipa — iﬁgr;z-t) o(t) .

We can return to coordinate space via

o= [ 3

2
/ dp e'?* (870 )4 exp (-a’p’ - ipa — i{;t) 6(t)

(zlp) (pl¥(t))

(= -

a)’

(z—a)?
403

( )1/4
= exp —
\&=) G

which agrees precisely with Eq. 1.24 found via coordinate space methods.

PROBLEM I.1.1

Wave Packet Spreading: A Pafadox

It was demonstrated above using the identity

o2 9
(g 32) e (

that a Gaussian wavepacket

evolves in time via

W(z,1) = €712 (2mo?) "4 e

o (-

(o* +

J’)
4z

Yz, t=0) = (2m07) " exp (_

1

22
402

z?

402§

i )"(t)

)

)

. (1.26)

(1.27)

(1.28)

(1.29)

(1.30)
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where

.t

C=1tigmet
Then . )
2 _ 2,0\ —1/2 __=

e O = @ra? ) ™ exp (- 3575 )
where 2
W)=+ oo
i) Show that

iii)

/ " dz (a0 =1

o 2
[zl = o)
-00
so that the wavepacket remains normalized to unity but has a width

12
o) =\t mis
which evolves with time. This is simply the usual “spreading” of a quantum
mechanical wave packet.
Derive the time evolution of the Gaussian wavepacket without exploiting the

identity by using a power series expansion
1/)(I,t) = e—iHo(z)t¢(z’O)
o0 [ 4 =] n
1 t 6% 1 z?
— 2\~-1/4 iy O S — e ——
= (2n0%) ; 2 (t2m) Oz2t £~ n! ( 402)

Now suppose that

exp (-af5) lel<a
¥(z,0)=N
0 jz|>a
where N is a normalization constant. Although this functional form may look
a bit strange, a little thought should convince one that the wavefunction and

all its derivatives are continuous at any point on the real line. However, it is
easy to see that :

Ho =1 /. t\" o™
-iHp(x)t = i PR .
¢ ¥(=,0) nz___%n! (’2m> 3::3"1/)(1:’0)
vanishes for all time if || > a since

827:

5;2;'0 =0 .

Hence, this type of wavepacket apparently does not undergo spreading. Is this
assertion correct? If not, where have we made an error in our analysis and
what does the actual time evolved wavefunction look like {HoS 72]?
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2 THE PROPAGATOR

One ¢un evaluate the co-ordinate space matrix element of the time development
operator by transforming to momentumn space and back again.

::> 6(t)

:::,fﬂj dp I‘P -s-l—t {p}z)wgft)/ |p(r -z I‘L-t

v—“()"'

DR t;2,0) =< 3’[5’(0)0 0)jz >= <z’ le“'m"

m(z' -z
= 6(t )\/_; Tt &P 1--—(—2—{——1-
(2.1)
Dp is usually called the “propagator,” as it gives the amplitude for a particle
produced at position z at time 0 to “propagate” to position z’ at time t.
Just as a check we can verify that this form of the propagator does indeed
generate the time development of the freely moving Gaussian wavefunction

Wiz t) = / dz D2’ 1; z,0)%(z, 0)

o -0

/oo d-l'\/—'z,}-”ex im(z’ — 2)* 1 (& ':;3)2.
—oo it P pid (2,,“.,2)1/4 exp 402 2.2)

- (a?)‘“ xp( (' - o)’ ) 1
=157 < 2 RNV
2n 4(c +izm ) (02+1§1’;)’

in complete agreement with expression derived in sect. 1.1.

Path Integrals and the Propagator

Before going further, iv is useful to note an alternative way by which the prop-
agator can be calculated~~the Feynman path integral [FeH 65]

Dp(z',t;2,0) = /D [z(t)] exp ﬂ;“it_)l (2.3)

where the notation is that the integral represents a sum over all paths z{#) con-
necting the initial and final spacetime points-r 0 and z’,t respectively., For each
path there is a weighting factor given by exp % where § = [ dtL[z(t)] is the clas-
sical action esscciated with that path. The path integration can be carried Hut by
dividing the timne interval 0 -t into n slices of width ¢. This provides a set of times
¢; spaced a distance ¢ apart between the values 0 and ¢. At each time ¢; we select a
point z:. A path is constructed by connecting all possible z; points so selected by
straight liaes as shown in Figure 1.1 and the path integral is writien (setting i = 1)
as

n -0

n-1 oo »
\ B
Dp{z',t;z,0)= lim 21; (/ dz;) exp 540 (2.4)
i=1 x
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; ;
x X Xin x

Fig. I.1: A particular time slice used in calculation of the propagator.

where A is a normalization constant which defines the measure—note that there is
one factor of A for each straight line segment. In the limit as ¢ — 0 we can evaluate
the action for each line segment in the infinitesimal approximation. For the free
particle we have

S = / at'L (=), 2(t"),t) = / t dt'lmz"(t')

..22 gz'%:")_ with zo=2z and z,=2'

=1

The integrations may be performed sequentially

e m ' /21nc
/_w dz, exp '3, ((zl - :co)2 + (z3 — ::1)2) =\ g P 2 2 (z2 — zg)

hd .m 1 2 : 2 21'1.6'2 ., m 2
/_mdrgcxplﬁ (E(zz-—xo) + (z3 — z3) ) -_-‘/ I expz3_2€ (23 — zg)

' 1
/ dzy, - 1expz§-( (z‘n 1~ 20)? + (2 — 2p- 1))

!')/—mt(n - 1)
nm

exp in’:n2c (zn — z0)?
{2.5)
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yielding

.\ (n-1)/2
2 , m
D}?) (z',t;2,0) = (%) = —ﬁexpzm(z' -z)? (2.6)

The constant A may be determined by use of the completeness condition

w(z't) = /w dz < 2'|UOXt,0))z >< z|y(0) >

oo (2.7)
= / dzD{(z', t; z,0)%(z,0) .
If we pick t = € <<< 1 then
) ! »)2
Y(z',€) = / d:z-j—i-‘exp iMw(z, 0)+... . (2.8)
—o0 2¢

Since ¢ is small, the exponential will rapidly oscillate and thereby wash out the
integral unless z = z’. Thus, we can write

] ' m)2
¢(z’,c)a‘¢(:',0)%/ dzexpir—n—(z—k—-f—)—-}-...

o (2.9)
_ iy 1 [2mie
= ¥(z',0) 5\ =
Hence in order to have the correct behavior as ¢ — 0 we must pick
2mie
A =\ (2.10)

so that the free propagator becomes, using ¢ = ne

[ m im [m im(z’ — z)?
D(;’) (z',t;z,0) = 27",neexp§7‘;(z'—:t:)2= mexp—(——z-z——)— (2.11)

in complete agreement with the expression derived via more conventional means
(¢f. Eq. 2.1).

The reason that the propagator can be written as a path integral can be un-
derstood by using the completeness relation

1= /’°° dz; |zi) (] . (2.12)

For later use, we shall give the derivation here for the general case involving inter-
action with a potential V(£). Starting with the definition

Dr (zg,ty;24,t;) = <z; lexp —if?(t/ - t.')l 17.'>3:t_{ - ) (2.13)
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and breaking the time interval t; —t; (assumed to be positive) into n discrete steps

£si
of size -t
T 0n

we can write
Dr(tf,‘/;zs,te)=/ dzlmdzn-1<zu Ie"‘ xn-1>
)

. (In_j Ie""‘g :t,-,_z) cee <tl le_“ﬂl Io) .

In the limit of large n the time slices become infinitesimal and

2
<zl |e-nﬂ' zt-1> = <.n exp —i€ (;—m-{- V(.i')) z¢_1>

~ exp —ieV (zy) <z¢ z¢_1> + 0(62) .

3
e—ie-,‘;;

Introducing a complete set of momentum states, we have

o0
<zz - zl_1>=/ :_icip(n-n-;)e—uf,’;
~o0

e—ftsz
m .m
=\ gwie P (Fe — ze-1)?

and, taking the continuum limit, we find the path integral prescription

Drp (zg,ty;2i,t) = nllm 21ne / dr,.1.
X exp 1 Z ( (—z‘-—-ﬂ—-—l)— eV(zg))
= [ D] expis (o)

where
S|®)] = [ ' dt (%m:’:"’(t) - V(z(t)))

is the classical action.

Classical Connection

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Perhaps the most peculiar and fascinating aspect of this prescription is that
all paths connecting the spacetime endpoints must be included in the summation.
This appears to be in total contradiction with the classical mechanics result that a
particle traverses a well-defined trajectory. The resolution of this apparent paradox
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may be found by explicitly restoring the dependence on ki and noting that the path
integral prescription is given by

> expiS[z(t)l/A (2.20)
z(1) .
Classical physics results as & — 0, and in this limit a slight change in the path
z(t) produces a huge change in phase and hence little or no contribution to the
path summation except for trajectories #(t) for which the actlon is stationary-—-i.e.,
Hamilton’s principle

6S[z(1)]

bz

=0 . (2.21)

z(t)=x2(t)

In order to find such a path we take

= S[&(t) + 62(t)] - S [3(¢)]
= [ [F G+ 6:0)) - TGE) - VE) + 626 + V()

= jf dt' (mz(1")62(t') — V'(Z(1'))62(t')) + O((62)%) . (2.22)

integrate by parts and use the feature that the endpoints of the path are fixed, i.e.,
8x(0) = éz(t) = 0. Then

- / dt'(mi(t') + V' (2(t)6z(t') . (2.23)

so that the LraJectory which satisfies the stationary phase condition for arbitrary
$z{t') must obey
mz+V'(z) = (2.24)

which is just the classical mechanics prescription for the motion of a freely moving
particle, 1.e., (t) = za(t). In the limit A — 0 the classical trajectory represents
the only path contributing to the path integral and the paradox is resolved.

One can also get a feel for the meaning of the propagator by noting that since

1/)(0)> = /_: dz’ <a: 'c"‘}?"

- / a2’ DOz, £ 2',0) (|(0)

(z]y(t)) = <x le—sﬁut

') (&[4 (0)}
(2.25)

if we take
(' 9(0)) = 6(=') (2.26)

so that at { == 0 the particle is located precisely at the origin, then

D (2,40,0) = /57 exp - = (aly(1)) (2.27)



