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Preface

The theory of holomorphic dynamical systems is a subject of increasing interest in
mathematics, both for its challenging problems and for its connections with other
branches of pure and applied mathematics.

A holomorphic dynamical system is the datum of a complex variety and a
holomorphic object (such as a self-map or a vector field) acting on it. The study
of a holomorphic dynamical system consists in describing the asymptotic behavior
of the system, associating it with some invariant objects (easy to compute) which
describe the dynamics and classify the possible holomorphic dynamical systems
supported by a given manifold. The behavior of a holomorphic dynamical system
is pretty much related to the geometry of the ambient manifold (for instance, hy-
perbolic manifolds do no admit chaotic behavior, while projective manifolds have
a variety of different chaotic pictures). The techniques used to tackle such prob-
lems are of various kinds: complex analysis, methods of real analysis, pluripotential
theory, algebraic geometry, differential geometry, topology.

To cover all the possible points of view of the subject in a unique occasion
has become almost impossible, and the CIME session in Cetraro on Holomorphic
Dynamical Systems was not an exception. On the other hand the selection of the
topics and of the speakers made it possible to focus on a number of important topics
in the discrete and in the continuous setting, both for the local and for the global
aspects, providing a fascinating introduction to many key problems of the current
research. The CIME Course aimed to give an ample description of the phenom-
ena occurring in central themes of holomorphic dynamics such as automorphisms
and meromorphic self-maps of projective spaces, of entire maps on complex spaces
and holomorphic foliations in surfaces and higher dimensional manifolds, enlight-
ening the different techniques used and bringing the audience to the borderline of
current research topics. This program, with its interdisciplinary characterization,
drew the attention and the participation of young researchers and experienced math-
ematicians coming from different backgrounds: complex analysis and geometry,
topology, ordinary differential equations and number theory. We are sure that the
present volume will serve the same purpose. We briefly describe here the papers
that stemmed from the courses and constitute the Chapters of this volume.
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In his lectures, Marco Abate outlines the local theory of iteration in one and
several variables. He studies the structure of the stable set K, of a selfmap f of
a neighborhood U of a fixed point, describing both the topological structure of K
and the dynamical nature of the (global) dynamical system (K, fix, ). One important
way to study a local holomorphic dynamical system consists in replacing it by an
equivalent but simpler system. Following a traditional approach, Abate considers
three equivalence relations - topological, holomorphic and formal conjugacy - and
discusses normal forms and invariants in all these cases. He starts surveying the one-
dimensional theory, which is fairly complete, even though there are still some open
problems, and then he presents what is known in the multidimensional case, that is
an exciting mixture of deep results and still unanswered very natural questions.

The lectures of Eric Bedford provide an introduction to the dynamics of the au-
tomorphisms of rational surfaces. The first part is devoted to polynomial automor-
phisms of C? and in particular to the complex Hénon maps, the most heavily studied
family of invertible holomorphic maps. The investigations of the Hénon maps can
be guided by the study of the dynamics of polynomial maps of one variable, a very
rich and classical topic. Although the Hénon family is only partially understood, its
methods and results provide motivation and guidance for the understanding of other
types of automorphisms. In the second part of the notes, Bedford considers the ge-
ometry of compact rational surfaces with the illustration of some examples of their
automorphisms. In contrast with the case of the polynomial automorphisms of C2,
not much is known about neither the set of all rational surface automorphisms, nor
about a dynamical classification of them.

The theory of foliations by Riemann surfaces is central in the study of continuous
aspects of holomorphic dynamics. In his lecture notes, Marco Brunella describes the
state of the art of the topic and reports on his results on the uniformisation theory of
foliations by curves on compact Kéhler manifolds. Each leaf is uniformized either
by the unit disk or by C or by the projective line. Brunella explains how the universal
covers may be patched together to form a complex manifold with good properties
and he studies the analytic properties of this manifold, in particular regarding holo-
morphic convexity. In turn this leads to results on the distribution of parabolic leaves
inside the foliation and to positivity statements concerning the canonical bundle of
the foliation, generalizing results of Arakelov on fibrations by algebraic curves.

Sibony’s course in the CIME session was based on the lecture notes by
Tien-Cuong Dinh and Nessim Sibony that are included in this volume. This con-
tribution, which could be a stand alone monograph for depth and extension, gives
a broad presentation to the most recent developments of pluripotential methods,
and to the theory of positive closed currents, in dynamics in Several Complex
Variables. The notes concentrate on the dynamics of endomorphisms of projective
spaces and the polynomial-like mappings. Green currents and equilibrium mea-
sure are constructed to study quantitative properties and speed of convergence
for endomorphisms of projective spaces; equidistribution problems and ergodic
properties are also treated. For polynomial-like mappings, the equilibrium mea-
sure of maximal entropy is constructed and equidistribution properties of points
are proved, under suitable dynamical degree assumptions. The tools introduced
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here are of independent interest and can be applied in other dynamical problems.
The presentation includes all the necessary prerequisites about plurisubharmonic
functions and currents, making the text self-contained and quite accessible.

In his lectures, Schleicher studies iteration theory of entire holomorphic functions
in one complex variable, a field of research that has been quite active in recent years.
A review of dynamics of entire maps, which includes the classical and well devel-
oped theory of polynomial dynamics, serves to introduce the main topic: the consid-
eration of transcendental maps. The notes study key dynamical properties of large
classes of transcendental functions and of special prototypical families of entire
maps such as the exponential family z +— Ae® or the cosine family 2 — ae + be
It turns out that some aspects of the dynamics of transcendental entire maps are in-
spired by the polynomial theory, others are very different and exploit all the power
of deep results from complex analysis. Transcendental dynamics turns out to be a
largely yet unexplored and fascinating arca of research where surprising mathemat-
ical results - that sometimes had been constructed artificially in other branches of
mathematics - arise in a natural way.

Itis areal pleasure to thank the speakers for their great lectures and all the authors
for the beautiful contributions to this volume. We also like to thank all the partic-
ipants for their interest and enthusiasm that created a very warm and stimulating
scientific atmosphere. We like to express our gratitude to CIME for sponsoring the
summer school, and to the LAMI (Laboratorio di Applicazioni della Matematica
all’Ingegneria, Universita della Calabria) for its financial contribution. Our partic-
ular gratitude goes to Pietro Zecca and Elvira Mascolo for their continuous sup-
port, and to their collaborators Carla Dionisi and Maria Giulia Bartaloni for their
invaluable help.

Graziano Gentili, Jacques Guenot and Giorgio Patrizio



List of Contributors

Marco Abate Dipartimento di Matematica, Universitadi Pisa, Largo Pontecorvo S,
56127 Pisa, Italy, abate@dm.unipi.it

Eric Bedford Department of Mathematics, Indiana University,
47405 Bloomington, IN, USA, bedford @indiana.edu

M. Brunella IMB - CNRS UMR 5584, 9 Avenue Savary, 21078 Dijon, France,
Marco.Brunella@u-bourgogne.fr

T.-C. Dinh  UPMC Univ Paris 06, UMR 7586, Institut de Mathématiques de
Jussieu, F-75005 Paris, France, dinh@math.jussicu.fr,
http://www.math.jussieu.fr/~dinh

N. Sibony Université Paris-Sud 11, Mathématique - Batiment 425, 91405 Orsay.
France, nessim.sibony @math.u-psud.fr

Dierk Schleicher School of Engineering and Science, Research I, Jacobs
University, Postfach 750 561, D-28725 Bremen, Germany, dierk@
Jacobs-university.de

Xiii



Contents

Discrete Holomorphic Local Dynamical Systems . ........... ... ... ... I
Marco Abate

I Introduction ... |

2 One Complex Variable: The Hyperbolic Case ........................ 4

3 One Complex Variable: The ParabolicCase . ... 9

4 One Complex Variable: The EllipticCase. .. ... 20

5 Several Complex Variables: The Hyperbolic Case . ... 0oL 32

6 Several Complex Variables: The Parabolic Case ...................... 38

7 Several Complex Variables: Other Cases .. ... 49

References « oo 50

Dynamics of Rational Surface Automorphisms . . ................... .. 57
Eric Bedford

I Polynomial Automorphisms of C* .. ... ... ... . ... .. . ... 57

LT HEnon Maps. ..o 57

1.2 Filtration .o 59

1.3 Falou COMPONENLS: 0 ivvwssessiimomsnsesmomarionssesassseniss 62

1.4 HyperboliCity ;i vssimimssioissinsmensarnsnssisssiabaniniiains 65

1.5 Rate of Escape . ... ..o i 69

1.6 Bottcher Coordinate ... ..o 72

1.7 Currentson RY oo 76

1.8 Currents on CY and Especially u' ... ... ... .. ... ... .. ... 78

1.9 Convergence to L ..o 82

2 Rational Surfaces ... 83

2.0 Blowing Up .o 83

2.2 CONOMOIOTY svwsmswin somemensnismetss dgmsmsmssiomis pamsmensae 86

2.3 Invariant Currents and Measures ... ... o 88

2.4 Three Involutions ... ..o e 90

2.5 Linecar Fractional Recurrences ... 94

2.6 Lincar Fractional Automorphisms ............. ... ... ... .. ... 96



Contents

X
2.7 Cremona Representalion ... i 98
2.8 More AUOMOTPIISIMNS v vy i ssimimerswemimsvnimemmememamsane 100
RETCTEINCES: v+ .« o iote o ewm o om o o w5t 6563 05 o0 6 608603 646 1§ 516 6 i s 103
Uniformisation of Foliations by Curves ............................. 105
Marco Brunella
I Foliations by Curves and their Uniformisation........................ 105
2 Some Results on Stein Fibrations ... o oo 107
2.1 Hyperbolic Fibrations............ ... .. . i i, 107
2.2 Parabolic Fibrations ... ... .. . 110
2.3 Foliations on Stein Manifolds ... . o o i 112
3 The Unparametrized Hartogs Extension Lemma ... o oo oo . 115
4 Holonomy Tubes and Covering Tubes. . ... ..o o oo o oL, 120
4.1 VanishingEnds ..o o o 120
4.2 Holonomy Tubes ... ... 124
4.3 COVering TUBES . cmiwomevip smimsmsmomsmusssainimmiggmsine 126
4.4 Rational Quasi-Fibrations ............c..coiiiiiiiiiiiinnennn. 130
S A Convexity Property of Covering Tubes ................. ... ..., 131
5.1 Boundedness of Areas .. ..o 133
5.2 Convergence Around the Boundary ... oo oo 135
5.3 ‘Convergence onthe INterior. .. wisieivssssnensmenmisasronsnsns 137
5.4 Construction of the Limit Levi-flat Hypersurface ......... ... .. .. 139
6 Hyperbolic Foliations ... .. o 140
7 Extension of Meromorphic Maps from Line Bundles .................. 148
751 NolUMe ESUMALES wv w v v o sw i s wims s wssm e oo em o m o m s 148
7.2 Extension of MeromorphicMaps .........cooviiiiiiniiiiinnnn 151
8 Parabolic Foliations ... ... ... o 154
8.1 Global Tubes ... 154
8.2 Parabolic: FONAUONS: s ou:sissmemimumsmesnensnmenisinsasmasses 156
8.3 Foliations by Rational Curves ......... ... .o i, 158
REFEIEIICES . . v« veir v oo vomr et o8 6068 0 306508 0,5 50 5k 8 5 8 6 S 6 8 i s 5 162

Dynamics in Several Complex Variables: Endomorphisms of Projective

Spaces and Polynomial-like Mappings . ............................. 165
Tien-Cuong Dinh and Nessim Sibony

INtrOAUCHION . ..o vv e vce e e s S G e 56 s 388 68 85 8 6 Wom b 0§ F 8 166

I Endomorphisms of Projective Spaces ... oo 168

1.1 Basic Propertics and Examples ... ..o oo oo 169

1.2 ‘Green'Currents and Julia Sets . c:c.uvvisiinsminsmsnrcsrsaminsas 174

1.3 Other Constructions of the Green Currents ...................... 182

1.4 Equidistributionof Points. .. ... .. 190

1.5 Equidistribution of Varieties ............ ... .. ... .. ... 200

1.6 Stochastic Properties of the Green Measure .. ... ... 205

1.7 Entropy, Hyperbolicity and Dimension ......................... 222

Lo £ S T Y TH Py 233



Contents Xi

2 Polynomial-like Maps in Higher Dimension ......................... 234
2.1 Examples, Degreesand Entropy .......... .. ... oo 235
2.2 Construction of the Green Measure. . ..., 240
2.3 Equidistribution Problems .. ... .. o o oo 246
2.4 Properties of the Green Measure ................ .. oL 249
2.5 Holomorphic Familiesof Maps ......... ... . ... ......... 257
INOTES 416 mumsmapnsmensmassasmisib@ifinsGivemifisNsEsmiEssedyyns 262

Appendix: Currents and Pluripotential Theory ... ... o o .. 262
A.1 Projective Spaces and Analytic Sets .......... ... oL 263
A.2 Positive Currents and p.s.h. Functions . .......... ... . ... ... 269
A.3 Intersection, Pull-back and Slicing ........ ... ... .. ..l 277
A4 Currents on Projective Spaces .. ... o i 281

RCICIeNCES « o 289

Dynamics of Entire Functions . .. ....... .. .. ... ... ... .. ... .. ..... 295
Dierk Schleicher

I Fatou and Julia Set of Entire Functions .. ......... ... .. ... ... .... 298

2 The Fatou Set of Entire Functions ..................................307

3 Entire Functions of Finite Type and of Bounded Type .................312

4 The Escaping Set ..ot 31T

5 Hausdorff DImension ..:ssesvasssssmissarimimssssamssng sominansns S02

6 Parameter Spaces . ... ... 325

7 Newton Maps of Entire Functions .................................. 329

8 A Few Open QUESHONS .« ..ottt 332

A. Background and Notation .. ......... .. ... .. ... .. ... 334

REICIENCES ottt e e e 335



Discrete Holomorphic Local Dynamical Systems

Marco Abate

Abstract This chapter is a survey on local dynamics of holomorphic maps in one
and several complex variables, discussing in particular normal forms and the struc-
ture of local stable sets in the non-hyperbolic case, and including several proofs and
a large bibliography.

1 Introduction

Let us begin by defining the main object of study in this survey.

Definition 1.1. Let M be a complex manifold, and p € M. A (discrete) holomorphic
local dynamical system at p is a holomorphic map f: U — M such that f(p) = p,
where U € M is an open neighbourhood of p; we shall also assume that f # idy.
We shall denote by End(M. p) the set of holomorphic local dynamical systems at p.

Remark 1.2. Since we are mainly concerned with the behavior of f nearby p, we
shall sometimes replace f by its restriction to some suitable open neighbourhood
of p. It is possible to formalize this fact by using germs of maps and germs of sets
at p. but for our purposes it will be enough to use a somewhat less formal approach.

Remark 1.3. In this survey we shall never have the occasion of discussing continu-
ous holomorphic dynamical systems (i.c., holomorphic foliations). So from now on
all dynamical systems in this paper will be discrete, except where explicitly noted
otherwise.

To talk about the dynamics of an f € End(M, p) we need to define the iterates
of f. If f is defined on the set U, then the second iterate _1"2 = fo f is defined

M. Abate
Dipartimento di Matematica, Universita di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy
e-mail: abate@dm.unipi.it

G. Gentili et al. (eds.). Holomorphic Dynamical Systems. |
Lecture Notes in Mathematics 1998, DOI 10.1007/978-3-642-13171-4_1,
© Springer-Verlag Berlin Heidelberg 2010
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onUN f "(U) only. which still is an open neighbourhood of p. More generally, the
k-th 1terate f‘ = fcf‘ Vis defined on U nf ) N---Nf K1 (U). This suggests
the next definition:

Definition 1.4. Let f € End(M, p) be a holomorphic local dynamical system defined
on an open set U © M. Then the stable set Ky of f is

Kp=(f "W).
k-0

In other words, the stable set of f is the set of all points z € U such that the orbit
{f*(2) | k € N} is well-defined. If z € U \ K. we shall say that 2 (or its orbit) escapes
from U.

Clearly, p € Ky, and so the stable set is never empty (but it can happen that
K; = {p}: see the next section for an example). Thus the first natural question in
local holomorphic dynamics is:

(Q1) What is the topological structure of Ky?

For instance, when does Ky have non-empty interior? As we shall see in
Proposition 4.1, holomorphic local dynamical systems such that p belongs to
the interior of the stable set enjoy special properties.

Remark 1.5. Both the definition of stable set and Question 1 (as well as several
other definitions and questions we shall see later on) are topological in character:
we might state them for local dynamical systems which are continuous only. As we
shall see, however, the answers will strongly depend on the holomorphicity of the
dynamical system.

Definition 1.6. Given f € End(M.p), a set K C M is completely f-invariant if
£ '(K) = K (this implies. in particular. that K is f-invariant, thatis f(K) C K).

Clearly, the stable set Ky is completely f-invariant. Therefore the pair (Kg, f) is
a discrete dynamical system in the usual sense, and so the second natural question
in local holomorphic dynamics is

(Q2) What is the dynamical structure of (Ky. f)?

For instance, what is the asymptotic behavior of the orbits? Do they converge to p.
or have they a chaotic behavior? Is there a dense orbit? Do there exist proper
f-invariant subsets. that is sets L © Ky such that f(L) C L? If they do exist. what is
the dynamics on them?

To answer all these questions, the most efficient way is to replace f by a
“dynamically equivalent” but simpler (e.g.. lincar) map g. In our context, “dynam-
ically equivalent”™ means “locally conjugated™; and we have at least three kinds of
conjugacy to consider.
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Definition 1.7. Let f1: U — M, and f>: Uy — M, be two holomorphic local
dynamical systems at p; € My and p, € M, respectively. We shall say that f
and f> are holomorphically (respectively, topologically) locally conjugated if there
are open neighbourhoods Wy C Uy of py, Wa C U, of pa, and a biholomorphism
(respectively, a homeomorphism) @ : W, — W, with @(p;) = p2 such that

fi=¢ 'ofiop on @ '(Wanfy'(Wa)) =Winf, ! (W).

If fi: Uy — M and f>: Uy — M> are locally conjugated, in particular we have
fi=¢ 'ofiog on @ 'Wan-nfy " Vma))=win-n g wy)

for all K € N and thus
K/'z'w2 - (p<Kf1\w| )-

So the local dynamics of f; about p) is to all purposes equivalent to the local dy-
namics of f> about ps.

Remark 1.8. Using local coordinates centered at p € M it is easy to show that any
holomorphic local dynamical system at p is holomorphically locally conjugated to
a holomorphic local dynamical system at O € C", where n = dimM.

Whenever we have an equivalence relation in a class of objects, there are classifica-
tion problems. So the third natural question in local holomorphic dynamics is

(Q3) Find a (possibly small) class .7 of holomorphic local dynamical systems
at O € C" such that every holomorphic local dynamical system f at a
point in an n-dimensional complex manifold is holomorphically (respec-
tively, topologically) locally conjugated to a (possibly) unique element of 7,
called the holomorphic (respectively, topological ) normal form of f.

Unfortunately, the holomorphic classification is often too complicated to be practi-
cal; the family .7 of normal forms might be uncountable. A possible replacement is
looking for invariants instead of normal forms:

(Q4) Find a way to associate a (possibly small) class of (possibly computable)
objects, called invariants, to any holomorphic local dynamical system f
at O € C" so that two holomorphic local dynamical systems at O can be
holomorphically conjugated only if they have the same invariants. The class
of invariants is furthermore said complete if two holomorphic local dynami-
cal systems at O are holomorphically conjugated if and only if they have the
same invariants.

As remarked before, up to now all the questions we asked made sense for topological
local dynamical systems: the next one instead makes sense only for holomorphic
local dynamical systems.

A holomorphic local dynamical system at O € C" is clearly given by an element
of Co{zy,....z,}". the space of n-uples of converging power series in zj,...,32,
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without constant terms. The space Cy{z),...,z,}" is a subspace of the space
Collz1.---vza]]" of n-uples of formal power series without constant terms. An
element @ € Cy|z...., zy)]" has an inverse (with respect to composition) still be-
longing to Co[[z),...,2,))" if and only if its linear part is a linear automorphism
of C".

Definition 1.9. We say that two holomorphic local dynamical systems fj, f2 €
Co{zy.... 2, }" are formally conjugated if there is an invertible @ € Cy[[z),...,2,]"
such that fj = @ "o frodin Collzy....,2.]"

It is clear that two holomorphically locally conjugated holomorphic local dy-
namical systems are both formally and topologically locally conjugated too. On the
other hand, we shall see examples of holomorphic local dynamical systems that
are topologically locally conjugated without being neither formally nor holomor-
phically locally conjugated, and examples of holomorphic local dynamical systems
that are formally conjugated without being neither holomorphically nor topologi-
cally locally conjugated. So the last natural question in local holomorphic dynamics
we shall deal with is

(QS) Find normal forms and invariants with respect to the relation of formal con-
Jugacy for holomorphic local dynamical systems at O € C".

In this survey we shall present some of the main results known on these ques-
tions, starting from the one-dimensional situation. But before entering the main
core of the paper I would like to heartily thank Frangois Berteloot, Kingshook
Biswas, Filippo Bracci, Santiago Diaz-Madrigal, Graziano Gentili, Giorgio Patrizio,
Mohamad Pouryayevali, Jasmin Raissy and Francesca Tovena, without whom none
of this would have been written.

2 One Complex Variable: The Hyperbolic Case

Let us then start by discussing holomorphic local dynamical systems at 0 € C. As
remarked in the previous section, such a system is given by a converging power
series f without constant term:
,
fR) =aiz+ @ + a3z + -+ € Cofz}.
Definition 2.1. The number a; = f7(0) is the multiplicr of f.
Since a)z is the best linear approximation of f, it is sensible to expect that the

local dynamics of f will be strongly influenced by the value of @;. For this reason
we introduce the following definitions:

Definition 2.2. Let ¢; € C be the multiplier of f € End(C,0). Then

— if |ay| < 1 we say that the fixed point 0 is attracting;
— if a; = 0 we say that the fixed point 0 is superattracting:
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— if || > 1 we say that the fixed point O is repelling;

— if |a)| # 0, I we say that the fixed point O is hyperbolic;

— ifa; € §" is aroot of unity, we say that the fixed point 0 is parabolic (or rationally
indifferent);

— if a; € S is not a root of unity, we say that the fixed point 0 is elliptic (or irra-
tionally indifferent).

As we shall see in a minute, the dynamics of one-dimensional holomorphic local
dynamical systems with a hyperbolic fixed point is pretty elementary; so we start
with this case.

Remark 2.3. Notice that if 0 is an attracting fixed point for f € End(C,0) with non-
zero multiplier, then it is a repelling fixed point for the inverse map f ' € End(C,0).

Assume first that O is attracting for the holomorphic local dynamical system f &
End(C,0). Then we can write f(z) = a;2+ O(z*), with 0 < |a;| < 1: hence we can
find a large constant M > 0, a small constant € > 0 and 0 < 6 < 1 such thatif |z| < €
then

<

If(z)] < (lai|+Me)lz| < 6]z (1)

In particular, if A¢ denotes the disk of center O and radius €, we have f(Ag) C A
for € > 0 small enough, and the stable set of f]4, is Ag itself (in particular, a one-
dimensional attracting fixed point is always stable). Furthermore,

14 (z)] < 8kl — 0

as k — oo, and thus every orbit starting in Ag is attracted by the origin, which is
the reason of the name “attracting” for such a fixed point.

If instead O is a repelling fixed point, a similar argument (or the observation that
0 is attracting for ') shows that for € > 0 small enough the stable set of f|4,
reduces to the origin only: all (non-trivial) orbits escape.

It is also not difficult to find holomorphic and topological normal forms for one-
dimensional holomorphic local dynamical systems with a hyperbolic fixed point,
as shown in the following result, which can be considered as the beginning of the
theory of holomorphic dynamical systems:

Theorem 2.4 (Keenigs, 1884 [Kee]). Let f € End(C,0) be a one-dimensional holo-
morphic local dynamical system with a hyperbolic fixed point at the origin, and let
ay € C*\ S" be its multiplier. Then:

(1) f is holomorphically (and hence formally) locally conjugated to its linear
part g(z) = ayz. The conjugation @ is uniquely determined by the condition
o'(0)=1.

(i1) Two such holomorphic local dynamical systems are holomorphically conju-
gated if and only if they have the same multiplier.

(ii1) f is topologically locally conjugated to the map g (z) = z/2 if |a)| < 1, and to
the map g-.(z) =2z if |a)| > 1.
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Proof. Let us assume 0 < |a)| < 15 if |ay| > 1 1t will suffice to apply the same
argument to f !

(i) Choose 0 < & < 1 such that 8% < |a)| < &. Writing f(z) = ayz+2°r(z) fora

(i)

(i1

~

suitable holomorphic germ r, we can clearly find € > 0 such that |a;| +Me <

0. where M = max|r(z)|. So we have
€A

f@)—aizl <Mz and  [f(2)] < 8¢
for all z € A and k € N.

Put ¢, = f*/a}: we claim that the sequence { @} converges to a holomorphic
map ¢: Az — C. Indeed we have

|1 (2) — @r(2) A,|f ) —aif*(z)

B w

< P <M (ﬁ)k
= ay |“' = ar| \Jai]

for all z € Ag, and so the telescopic series Y, (@y .1 — @) is uniformly conver-
gentin Ag 10 @ — @y

Sin.cc ¢, (0) =1 for all k € N, we hzfvc ¢'(0) = 1 un(_l 50, up 1o possibly
shrink €, we can assume that ¢ is a biholomorphism with its image. More-
over, we have

5
¥4

|z]

k[ £(- k1o
o(f(z) :Alim L‘()) =a; lim % =a19(z),

s+ oo (1] k— 400 (l]

thatis f = @ 'ogo ¢, as claimed.

If y is another local holomorphic function such that y/(0) = 1 and y 'ogo
v = f. it follows that wo @ ' (Az) = Ay o ¢ '(z): comparing the expansion
in power series of both sides we find yo @ ' = id. that is y = ¢, as claimed.
Since fi = ¢ ' o fro0¢@ implies £1(0) = £3(0). the multiplier is invariant un-
der holomorphic local conjugation, and so two one-dimensional holomorphic
local dynamical systems with a hyperbolic fixed point are holomorphically
locally conjugated if and only if they have the same multiplier.

Since |a;| < I itis easy to build a topological conjugacy between g and g
on Ag.
€} and the annulus {€/2 < |z| < e} which is the identity on the outer circle
and given by x(z) = z/(2a;) on the inner circle. Now extend y by induction to
a homeomorphism between the annuli {|a;[*e < |z| < |a;[* 'e} and {g/2* <
lz| < &/2% '} by prescribing

I
x(a12) = 5 x(2).

v

Putting finally x(0) = 0 we then get a homeomorphism y of Ag with itself

such that g = y 'og. o . as required. 0
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Remark 2.5. Notice that g-(z) = 1z and g-(z) = 2z cannot be topologically
conjugated, because (for instance) K, is open whereas K, = {0} is not.

Remark 2.6. The proof of this theorem is based on two techniques often used in
dynamics to build conjugations. The first one is used in part (i). Suppose that we
would like to prove that two invertible local dynamical systems f, g € End(M, p)
are conjugated. Set ¢, = g o f*, so that

k

pof=g  off =gogi.

Therefore if we can prove that {¢g} converges to an invertible map ¢ as k — +oo
we get @ o f = goe, and thus f and g are conjugated, as desired. This is exactly
the way we proved Theorem 2.4.(i); and we shall see variations of this technique
later on.

To describe the second technique we need a definition.

Definition 2.7. Let f: X — X be an open continuous self-map of a topological
space X. A fundamental domain for f is an open subset D C X such that
() (D) N fX(D) =0 forevery h # k € N;
(i) U f4(D)=X;
keN
(iii) if 21, 20 € D are so that f"(z)) = f¥(z2) for some h >k € N then h = k+ 1 and
22 =f(z1) € dD.
There are other possible definitions of a fundamental domain, but this will work for
our aims.
Suppose that we would like to prove that two open continuous maps f) : X| — X
and f>: X» — X» are topologically conjugated. Assume we have fundamental do-
mains D; C X; for f; (with j =1, 2) and a homeomorphism y : Dy — D7 such that

xofi=faoyx (2)

on Dy N f; (Dy). Then we can extend x to a homeomorphism % : X; — Xz conju-
gating f) and f> by setting

X = £ (x(w), 3)

for all z € X, where k = k(z) € N and w = w(z) € D are chosen so that f]"'(w) =z
The definition of fundamental domain and (2) imply that y is well-defined. Clearly
%o fi = f>0 % and using the openness of f) and fy it is easy to check that y is a
homeomorphism. This is the technique we used in the proof of Theorem 2.4.(iii);
and we shall use it again later.

Thus the dynamics in the one-dimensional hyperbolic case is completely clear.
The superattracting case can be treated similarly. If 0 is a superattracting point for
an f € End(C,0), we can write

1

f(*-) :Ur:r+(lr! |:r = o

with a, # 0.



