Abstract Algebra
A Computational Approach

Charles C. Sims

"~ Abstract Algebra
A Computational Approach

Charles C. Sims

Rutgers University

JOHN WILEY & SONS
ew York Chichester Brisbane Toronto Singapore

Copyright © 1984, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data

Sims, Charles C.
Abstract algebra.

Includes index.

1. Algebra, Abstract—-Data processing. 1. Title.
QA16Z.354 1984 512°,02°028542 83-6715
ISBN 0-471-09846-9)

Printed in the United States of America

10:9.8.:7 6.5.4:321

PREFACE

This book is intended as a text for a one-year introductory course in abstract
algebra in which algorithmic questions and computation are stressed. A sig-
nificant amount of computer usage by students is anticipated. My decision
to write the book grew out of my interest in group-theoretic algorithms and
my observation that learning the definitions, the theorems, and even the
proofs of algebra too often fails to equip students adequately to solve com-
putational algebraic problems. The goals of the book are to:

1 Introduce students to the basic concepts of algebra and to elementary
results about them.

2 Present the concept of an algorithm and to discuss certain fundamental
algebraic algorithms.

3 Show how computers can be used to solve algebraic problems and to
provide a library, CLASSLIB, of computer programs with which stu-
dents can investigate interesting computational questions in algebra.

4 Describe the APL computer language to the extent needed to achieve
the other goals.

To help meet these goals, two additional manuals have been prepared, an
instructor’s manual and a CLASSLIB user’s manual. There is more ma-
terial here than can be covered in a one-year course. The instructor’s manual
contains suggested course outlines, hints on how to use this book, and the
answers to selected exercises, including all that involve APL. The CLASSLIB
user’s manual contains detailed information about the library with com-
plete listings of all programs. Generally, students should not need to acquire
the user’s manual. However, anyone wishing to make extensive use of
CLASSLIB will probably want to have a copy. Both manuals are available
from the publisher. The library can be obtained in machine-readable form
from the author.

Computation in algebra is not really new. In some areas, such as num-
ber theory, there is a tradition of hand calculation going back hundreds of
years. However, the development of the digital computer has inspired new
interest in the subject. More and more research effort is being devoted to the

vii

existence and efficiency of algebraic algorithms. In addition, the use of com-
puters to solve problems in algebra is growing steadily. Many algebraic algo-
rithms can be understood by students in an introductory course.

The choice of the computer language to be used was very important.
Of the languages normally available at college computer centers, only one is
really suited for use in the teaching of algebra to students with little or no
prior computing experience. That language is APL. The superiority of APL
stems as much from the way the language is implemented as it does from the
nature of the language itself. Here are some of the features of APL that
make it the natural choice for this book.

1 APL is implemented in an interactive mode.

2 Arrays exist independent of programs.

3 One-line statements can be entered and executed immediately. In ef-
fect, beginning students do not have to write programs in the traditional
sense. :

4 The language contains many powerful primitive operations for manip-
ulating arrays that are very useful in describing algebraic algorithms.

Even with the power of the APL language, most of the algorithms
discussed are too complicated to be coded efficiently by beginning pro-
grammers. Therefore I decided to provide a library of programs that would
allow students to use the algorithms on nontrivial problems while developing
their skill in using APL. Students should not need to acquire a separate APL
text; the appendices provide an adequate introduction to the language.

At this point, it would be good to mention several things that the book
is not. It is not a text in applied algebra, which emphasizes the use of alge-
braic techniques to solve problems that arise outside of mathematics. Neither
is this a book on numerical linear algebra, which deals with the numerical
analysis aspects of linear algebra over the real and complex fields. Although
the difficulties of performing computer calculations with real and complex
numbers are discussed, the emphasis is on exact computation. For this
reason, many of the computational exercises in linear algebra involve the
fields GF(p), p a prime.

There are two reasons for recommending that this book be used for a
one-year course. First, the time required to introduce students to APL is
too great to leave sufficient time to cover a reasonable amount of algebra
in a one-semester course. In order to be able to understand and reproduce
the dialogues in the text, one needs to know the material in Sections 1 to 3
and 5 to 7 of Appendix 1 and Sections 2 and 3 of Appendix 2, as well as
certain topics discussed in Sections Al.4 and A2.l. Approximately three
weeks are necessary to cover this material, and even more time must be

viii

spent if significant original programming is to be required of students. The
second reason for suggesting a one-year course is that the most interesting
algorithms, at least to me, come in the second half of the course. All of the
chapters contain computational topics, but it was my desire to describe the
material in Sections 6.5, 7.4, and 8.2, which provided the main motivation
for this book. There are several additional topics that I would have liked to
include. Some, such as factorization in Z[X] and a study of the ideals in
Z[X], were omitted for lack of space. Others, such as some of the recent
developments in computational group theory, could not be included because
they involve concepts that do not fit easily into‘an introductory algebra
course. Galois theory has been left out because practical algorithms for com-
puting Galois groups are too involvéd to be presented at this level.

In the text, the lemmas, theorems, and corollaries are numbered con-
secutively within a section. Theorem 3 of Section 4 of Chapter 6 is re-
ferred to as Theorem 4.3 in other sections of Chapter 6 and as Theorem
6.4.3 outside of Chapter 6. A similar numbering system is used for ex-
amples and for exercises. Names occurring in brackets are references to
the bibliography. In the contents, sections marked with an asterisk may
be omitted without affecting the logical development. Exercises of greater
than average difficulty are also flagged with asterisks. The ends of proofs
aré marked with the symbol 0. A [at the end of a theorem indicates that -
the proof of that theorem will be omitted.

Much of the writing of this book was done in college libraries. I am
indebted to the library staffs at Rutgers University, Princeton University,
Monmouth College, Southern Methodist University, and the Australian
National University for the facilities they made available. Many individ-
uals provided assistance throughout the eight years during which this book
took shape. I wish to thank James England, Eugene Klotz, and Don Orth
for many useful conversations concerning the use of APL in expostion.
Michael O’Nan and Hale Trotter provided assistance on various mathe-
matical topics. In particular, some of the material in Section 7.4 is based
on a talk by Trotter. Certainly thanks are due to Kenneth Iverson. With-
out his development of APL, this book, at ieast in its present form, would
not have been possible. Finally, I wish to record my deep gratitude to my
wife, Annette, who typed an early version of this text and then typed the
entire manuscript into a homegrown word processor. Her assistance made
the preparation of the book much easier than it would otherwise have been.

Charles C. Sims

SIGNIFICANT DEPENDENCIES BETWEEN SECTIONS

1.1-1.3

8.2-8.3 l

XV

2.1+2.4 1.4-1.5
2.5 3.9-35
3.6 3738
4.1-4.7 3.10-3.11 2.9
5.1-5.3 4.9-4.10 4.8
6.1-6.3 4.12 4.11
6.5 6.4 5.4
6.7 6.6 1372
8.1 7.3-7.4 |

CONTENTS

SIGNIFICANT DEPENDENCIES BETWEEN SECTIONS

INTRODUCTION

1 SETS

L
s

3
*4.
5

Sets

Relations

Functions

Sets of sets using APL
Block designs and graphs

2 THE INTEGERS

ks
2
5

4.

£5.

Divisibility

Greatest common divisors
Congruence

Primes

Multiple-precision arithmetic

3 GROUPS

10.
g

*
VORI~

Binary operations
Groups

Subgroups
Homomorphisms
Normal subgroups
Direct products
Permutations
Permutation groups
Graphs with a small number of vertices
Conjugacy

The Sylow Theorems

Xi

12
18
28
33

41

41
43
50
54
60

68

68
77
83
92
97
104
110
116
127
133

‘141

4 RINGS
1. Definition and examples
2. Subrings and homomorphisms
3. Computing in rings using APL
4. Polynomial rings
5. Matrix rings
6. Determinants
7. Units in matrix rings
8. Fields of fractions
9. Euclidean domains
10. Factorization
*11. Polynomial rings over UFD’s
*12. Interpolation
5 , MODULES
1. Definitions
2. Free modules
3. Endomorphism rings
4. . Algebras

6 MODULES OVER EUCLIDEAN DOMAINS

1. Row equivalence
2. Row equivalence, continued
3. Vector spaces
4. Solving linear systems using row operations
5. Finitely generated modules
6. Uniqueness of cyclic decompositions
*7_ Solving linear systems using row and column operations
7 FIELDS
1. Extension fields
2. Splitting Fields
*3_. Finite fields
*4. Factorization in Z, [X]

8 LINEAR TRANSFORMATIONS

1.
2,
3.

Similarity

Rational canonical form

Eigenvalues and eigenvectors
xii

146

146
154
160
166
175
181
191
206
210
216
229
234

241

241
249
260
268

281

281
292
303
311
323
336
343

348

348
353
357
364

373

373
380
395

APPENDIX 1 THE APL LANGUAGE

1. A sample terminal session
Arrays

Primitive scalar operations
Defined procedures
Primitive mixed operations
Reduction and scan

Inner and outer products
Some additional operations

©Nov s WwN

APPENDIX 2 APL SYSTEMS

Editing

System variables

Workspaces and system commands
Error messages

Debugging

Programming efficiency

AR N R S

APPENDIX 3 THE SUPPLEMENTAL WORKSPACES

1. CLASSLIB
2. EXAMPLES

BIBLIOGRAPHY

INDEX

xiii

405

406
410
415
423
431
442

445

448

456

456
459
462
466
467
470

474
474

478

480

483

~ INTRODUCTION

This book is an introduction to the area of mathematics called abstract
algebra or, simply, algebra. It differs from most books on the subject in that
computation plays a central role throughout. A substantial portion of the
text is devoted to algorithms for solving algebraic problems. Loosely de-
fined, an algorithm is a sequence of instructions for solving a particular
problem or class of problems. The instructions must. be unambiguous,
with no room for different interpretations by different individuals, and must
lead to the solution of the problem in a finite number of steps. The em-
phasis here will be on algorithms that can be carried out, or executed, by
a computer.

It is difficult to establish a specific date for the beginning of any branch
of mathematics. Nevertheless, it is widely agreed that the work of the
French mathematlclan Evariste Galois (1811-1832) set the stage for the
development of algebra into one of the major areas of mathematical ac-
tivity. It was not until later in the nineteenth century, however, that ab-
straction became an important part of algebra. Abstraction is the process by
which similarities are recognized between apparently dissimilar mathema-
tical objects and by which these similarities are shown to be consequences
of a few basic properties (axioms) that are possessed by all of the objects

being studied. It is to this process that the word “abstract” in the phrase.

“abstract algebra’ refers.

Introductory algebra courses are often referred to as courses on groups,
rings, and fields. Algebra involves more than the study of groups, rings,
and fields, but these three types of algebraic structures, together with
one additional type, modules, form the subject matter of this text. The
term ‘‘group” was coined by Galois, but the first formal definition was not
given until 1849 and the value of the concept of an “‘abstract group’ was
not recognized for nearly 30 years more. The idea of a field is present in
Galois’ work, but the term was introduced by the German mathematician _

1

2 INTRODUCTION

Richard Dedekind (1831-1916) and the definition was not standardized
until late in the nineteenth century. Although many examples of rings
were known in the nineteenth century, the abstract theory was developed
during the present century. The term “ring” was formulated by David
Hilberi (1862-1943), a very important German mathematician.

The formal prerequisites for the study of abstract algebra are minimal.
However, it will be assumed that readers are familiar with certain concepts
normally covered in lower-level undergraduate mathematics courses. These
concepts include proofs by induction and the elementary properties of
sets, the integers, and rational numbers. Some acquaintance with real and
complex numbers will also be assumed.

In this text, as in any text on abstract algebra, a considerable amount of
space is devoted to the formal development of the subject. As axioms are
stated, definitions made, and theorems proved, readers are encouraged to
study particular examples in detail. It is only through the study of examples
that one can see how the abstract theory provides an efficient method of
deriving useful information about many different mathematical objects.
The investigation of examples can be facilitated with the help of a com-
puter. The computer makes it possible to look at more complicated and,
one hopes, more interesting examples by removing the drudgery of time-
consuming hand calculation.

In order to communicate with a computer we must use a computer language.
The language chosen for use in this book is APL. The APL language is ex-
tremely powerful, which means that complicated calculations can be de-
scribed with a few symbols. APL also possesses a high degree of internal
consistency and, in many ways, is more logical than traditional mathe-
matical notation. No prior knowledge of APL will be assumed. The ap-
pendices contain a description of the aspects of APL that are important
for using this text. Appendix 1 describes the APL language in sufficient
detail to permit readers to follow the computer examples in this book.
However, it is very important that readers be able to work out these and
other examples on the computer. Appendix 2 contains further information
about APL systems that can help readers use their local systems efficiently.

In order to make the best possible use of this book, readers should have
agcess to two APL vforkspac;es that have been specifically created to sup-
plement the text. The workspace CLASSLIB contains procedures for carry-
ing out many types of algebraic computations. The workspace EXAMPLES

INTRODUCTION 3

contains arrays that represent various kinds of algebraic objects. The ar-
rays in EXAMPLES are used in the computational examples in the text. A
more complete description of the contents of these two workspaces can
be found in Appendix 3. It is suggested that the naming conventions de-
scribed in Section A3.1 be read before making extensive use of CLASSLIB.
All of the computer examples in the text assume that the contents of both
CLASSLIB and EXAMPLES are present in the active workspace.

The algorithms used in most of the procedures in CLASSLI B are discussed
in the text. As each procedure is introduced, readers should concentrate on
learning what it does and on understanding the basic algorithm involved.
Once some familiarity with a procedure has been achieved, it is an extremely
valuable exercise to write one’s own version of the procedure and compare
it to the version in the library. I would appreciate being informed about
possible improvements to the procedures in CLASSLIB.

Readers having some experience with APL may proceed immediately to
Chapter .1. Those not familiar with APL should begin by reading through the
first seven sections of Appendix 1. It is not necessary to become an expert
in the use of APL before starting to learn algebra using this book. Once the
fundamentals of the language have been grasped, the study of the real sub-
ject matter—abstract algebra—should be begun. The appendices can then be
used for reference, as needed.

We will be using two different systems of symbolic notation, APL and tra-
ditional, and it is important to be able to recognize which system is being
used in a particular expression. APL expressions are printed in a special
type font used only for APL. Thus C<A ZGCD B is an APL expression.
When any other type font is used, as in the statement “let ¢ = gcd(a, b)”,
traditional mathematical notation is assumed. Some care is required to
distinguish between the two commas that occur in this book. The ordinary
comma (,) is a mark of punctuation, but the APL comma (,) represents one
of two APL operations that are described in Section Al.5. Occasionally, we
will borrow certain aspects of APL notation for use with traditional nota-
tion. For example, we will sometimes denote the entry in the ith row and
jth column of the matrix A by A[i;j], even though A is not an APL array.
These borrowings should not present any serious problems.

SETS

For nearly 100 years the formal exposition of mathematics has been based
on the concept of a set. Readers are no doubt familiar with sets from previous
courses in mathematics. In this chapter we will summarize the basic defini-
tions, notation, and operations of set theory. We will also discuss ways of -
representing sets by APL arrays and techmques for manipulating these
arrays to perform set-theoretic operations. The APL index origin, described
in Section A 1.2, is normally assumed to be 1.

1. SETS

One of the most important ideas in the development of mathematics is the
use of the axiomatic method, in which all of the theorems in a particular
branch of mathematics are obtained as logical consequences of a few axioms
that state the basic properties that are assumed to hold for the objects under
study. This approach is probably most familiar in the area of plane geom-
etry. In an axiomatic treatment of plane geometry, no attempt is made to
say what points and lines really are. Instead, one writes down axioms such

s “through any two distinct points there passes eaactly one line”” in an
attempt to formalize our intuitive notions about the kinds of pictures we
can draw using a straightedge and a very sharp pencil. The axiomatic method
is universally agreed to be the proper approach to the study of abstract
algebra.

« The idea of a set has been found to be of fundamental importance not
only in algebra but in most of present-day mathematics. All of the alge-
braic objects we will study will be sets. It would seem reasonable, there-
fore, to begin our study of algebra with an axiomatic treatment of sets.
This approach seems even more essential when we learn, as we will at the
end of this section, that our intuition concerning sets can lead us to logical
contradictions. However, we will follow the accepted practice in introduc-
tory algebra texts and omit a formal treatment of sets. There are two reasons
for this. First, the exposition of axiomatic set theory would delay too
long our study of the main subject matter of this book: the basic properties

4

SETS 5

of algebraic systems such as groups, rings, and fields and the algorithms for
solving problems related to them. Second, our intuition leads us astray
only when we try to consider sets that are “too big”. The sets we will en-
counter in our study of algebra will be “small enough’ that our intuition
can be trusted not to get usinto trouble.

We define a set to be any collection of objects called the elements or
members of the set. A commonly used synonym for “‘set” is “family”’. The
word “‘group” should not be used as a synonym for “set’’ because a group
in mathematical terminology is a particular kind of algebraic object that
we will study in Chapter 3. If x is an element of the set X, we write x ¢ X
and say that x belongs to X or that x is in X. If x is not an element of X,
we write x ¢ X. Two sets are equal if they have the same elements. Thus
the statement X = Y is equivalent to the following pair of assertions:

1. IfxeX, thenxeY.
2. IfyeY,thenyeX.

To show that X and Y are not equal, we must exhibit an element of X
that is not an element of Y or an element of Y that is not an element of X.

There are two standard ways of describing a set. The first is to list
the elements of the set separated by commas and enclosed in braces. Thus

S%41,2,3,5,8,13}, U=1{23,57,11},
A={214ISI 16}1 B={16l 81412}l
. C=1{2,4,8,16,8,4,2}

are all sets whose elements are positive integers. Since neither the order in
- which the elements are listed nor the fact that some elements are repeated
has any significance, the sets 4, B, and C are all equal.
The easiest sets to represent in APL are finite sets of real numbers.
= Since the entries of an APL array are real numbers, we may simply define
S *:q.mtorwhm components list the elements of the set. Thus, if

ot 00 T - 0 B+16 8 4 2
: e N % el §. 8 16 .8 4 2
A<2 4 8 16

then the vectors S, U, A, B, C correspond naturally to the definition of

- the sets S, U, 4, B, C. (To save space, APL dialogues such as the preceding

one are printed in two columns. At a terminal, they would appear as one
long column.)

The notation {a,, ..., a,} and the use of an APL vector to list the

elements of a set both have the drawback that the representation for a par-

ticular set is not unique. In general, there is no natural order on the ele-

6 SETS

ments of a set but, if the elements of the set are real numbers, we do get

.a unique representation if we assume the elements are listed in increasing
order and without repetitions. The procedure SSORT in CLASSLIB pro-
duces this standard list of the elements in the set described by an arbitrary
vector.

B c
16 8 4 2 2 4 8 16 8 4 2
SSORT B SSORT C
2:-4 8 16 2 4 8 1® '

If X is an APL vector, we will often speak of “the set X instead of “the
set represented by X . In particular, we will often refer to the set 1N, which
can, of course, mean either {1,2,...,N}or {0,1, ..., N- 1}, depending on
the index origin.

Sets whose elements are not-real numbers are more difficult to repre-
sent in APL. We will have to represent sets of sets of real numbers, sets of
polynomials, and many other types of sets. Techniques for doing this will
be discussed as the need arises.

The second way to describe a set is to specify a property that charac-
terizes the elements of that set. The statement

X = {x|P(x)}

is read “X is the set of all x such that the property P holds for x.”’ For ex-
ample, we may define two sets L and M as follows:

L = {x|x is a positive real number},
M = {t|t is an even integer}.

There are a few sets that will come up so frequently that it is con-
venient to have special symbols for them. The set of integers will be de-
noted by Z and the set of positive integers or natural numbers by N. The
symbols Q, R, and C will stand for the set of rational numbers, the set of
real numbers, and the set of complex numbers, respectively.

Suppose we define a set E by

E={x|xeR, x?=-1}.

Since every real number has a nonnegative square, £ has no elements. Such
a set is said to be empty. The following theorem shows, among other things,
that the set of all unicorns is equal to the set of all letters in the English
alphabet that come after the letter Z.

SETS 7

THEOREM 1. Any two empty sets are equal.

Proof. Let X and Y be empty sets. Since X is empty, we cannot find
any element x of X, and so we certainly cannot produce an x in X that is
not in Y. Similarly, we cannot find an element of ¥ that is not in X be-
cause Y has no elements. Thus we are forced to conclude that the state-
ment X # Y is false, so X and ¥ must be equal. [J

By Theorem 1 we may speak of the empty set, since there is only
one. It will be denoted by the symbol @ . Whenever we define a property
that a particular set may or may not have, it is a useful exercise to de-

- termine whether the empty set has the property.

A set A is a subset of a set B if every element of 4 is also an element
of B. In this case, we also say A is contained in B or that B contains A.
A subset 4 of ‘B is called a proper subset if A # B, that is, if there is some
element of B that is not in 4. We will write 4 C B when A is a subset of
B and A C B when 4 is a proper subset of B. Some authors prefer to write
A C B where we write A C B. The notation used here has been chosen be-
cause it parallels the use of < and < to denote inequality of real numbers.
The statements B D 4 and B D 4 mean 4 C B and A C B, respectively.
We have ® C A and A C 4 for any set 4.

If the APL vectors 4 and B list the elements of two subsets 4 and
B of R, then the assertion 4 C B corresponds to the APL proposition A/4 ¢ B.
(An APL proposition is an APL expression with one entry, which is either
I or 0. The APL membership operation ¢ is described in Section AlS
and the operation A/, called “and reduction”, is discussed in Section A 1 .6.)

- For example,

A<l 345 : A/AeB

Ddr 2R3y 1

gre -8 #5 i AJAeC
& 0

- Here 4 is a subset of B but not of C.

~ For the time being, we will rely on our intuition concerning the term

- “finite set”, which will be defined in Section 3 of this chapter. If X is a

~ finite set, then |X| is the cardinality of X, that is, the number of elements
of X.

Suppose A,, ..., A, are sets of real numbers such that [4;| = m for
- 1 <i < k. We can represent {Ay, ...,A;} by a k-by-m matrix 4 such that
the 7th row A[I;] of 4 lists the elements of A 1. For example, CLASSLIB
- contains a procedure SSUB such that A<«X SSUB N defines 4 ‘to be a
%matrix whose rows list the K-element subsets of 1 /.

£

