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INTRODUCTION

In January, 1982 four number theorists - David and Gregory

Chudnovsky, Harvey Cohn, and Melvyn B. Nathanson - organized the

"New York Number Theory Seminar. The Seminar met weekly during the

spring, 1982 semester at the Graduate School and University Center
of the City University of New Yofk at 11 West 42 Street in
Manhattan. This volume contains expanded texts of the lectures
delivered in .the Seminar. The Seminar continued in the 1982-83
academic year, and the reports presented in this second year will
be published in a subsequent volume.

The organizers hope that the New York Number Theory
Seminar will provide a continuing opportunity to discuss recent
results in the higher arithmetic, and that the publication of
the annual proceedings will contribute to research in number

theory.
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Moments of additive functions and sieve methods

Krishnaswami Allad;L*

§1. : Introdﬁction

We shall repbrt here our recent work on the estimation of moments of additive
functions f£f(n),  for values n restricted to certain subsets S of the positive
integers. Although of relatively recent origin, additive functions have been an
object of intense study in the past few decades because a number of impressive dis-
tribution results could be established using a variety of techniques. Most research
however relates to the set E+ of all positive integers and the problem concerning
subsets S of Z+ has received little attention. The purpose of this exposition
is to describe a new method that we employ, -wixich enables us, amongst other things,
to extend various classical results to certain subsets §; besides, our method may
have other implications as well. As far as we know, it is the first occasion when
the sieve method has been used in such moment problems and this results in a satis-
factory treatment of a wide class of sets S.

So far the main interest in employing the moment method to étudy the distri-
bution of additive functions has been due to its entirely elementary nature, but
this in turn led to several tedious calculations. Our approach eliminates much of
this difficulty by using the machinery of bilateral Laplace transforms.

Our paper is basically divided into two parts. Up to §4 we discuss several
classical results and remark on their merits and limitations. From §5 to §10 we
describe our method and results and compare these with earlier approaches. We state
our results in §§8 and 9. Finally in §10 we briefly discuss limitations in our tech-
nique and indicate directions for further work and progress.

Our method is an improvement of a recent technique due to Elliott [6] who ob-
tained uniform upper bounds for the moments of arbitrary additive functions, in the
situation S =Z+. Later, in §9, we shall point out similarities and differences
between Elliott's approach and ours.

- We only discuss the main ideas here and not give details of proofs. A more
complete treatment of our method can be found in [1]. For now, we conclude this
Section by collecting some notatioms and conventions.

Recall that an 'additive function f(n) 1is an arithmetical function that satis-
fies f(m)=£(m)+f(n) for integers m,n with g.c.d. (mn)=1. Similarly a

*Talk given at the New York Number Theory Seminar on April 12, 1982.



multiplicative function g satisfies g(mn) = gm)g(n) for (m,n)=1. Thus additive
and multiplicative functions are completely determined by their values on prime powers
pe, e e Z+. For simplicity we concentrate here on strongly additive functions £
which satisfy

fm) =. % £(0) . (1.1)
pln
p=prime

Similarly a strongly multiplicative function g is given by

gn) = 1 g(p) . : (1.2)
pln

As usual emply sums equal zero and empty products, ome.

The sets S we discuss will satisfy some conditions imposed upon the quantity

S.(x) = 2. a = (1.3)
5 n<x, neS 2
n=0(mod d)

where {an] is a sequence of 'weights' attached to S. The weights are > 0 and

we write

5,0 = 28 4 r @, 1.4)
where X = Sl(x). We require that
w(d) s multiplicative, > 0 and w(p) 1is bounded . 1.5)
In addition we need
"average of IRd(x)| is in some sense small" . (1.6)

We shall make (1.6) more precise in the sequel.
With S as above we associate with each strongly additive £, the sums

AG) = Ay = T EE)E@) .7
; o gl
and ; 2
K ‘
B () = T IE@ ok | o k350 1.8)
p<x » ‘

As usual the « and 'O' notation are equivalent and will be used inter-

changeably as is convenient. Unless indicated otherwise, implicit constants are
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absolute, or depend ‘at most upon S and this will be clear from the context. The
Moebius function u(n) 4s the multiplicative function given by u(p)=-1 for each
‘prime p, and u(p%) =0 for all p and e > 2. We denote by p(n) the smallest
.iar:l.me factor of n if n> 1, &and p(l)=w. Finally P(y)= I p. Further notation
will be introduced when needed. Py

§2. Classical distribution results

'Desp:l.te the fact that prime numbers have been the focus of attemtion in Number
Theory since Greek antiquity, the first significant results on v(n), the numbér of
prime divisors of n, were established only in the twentieth century. More pre=
cisely Hardy and ilamanujan [13] observed in 1917 that v(n) is almost always nearly
loglogn - in size. This was really the starting point for the study of additive
functions although the subject took shape only two decades later.

Intensive study began in 1934 when P. Turan [19] showed that

% (£(n)-A(x))> < xA(x) 2.1)
n<x

holds for strongly additive functions f satisfying 0 < f(p) < 1. In particular
from (2.1) with f(n) = V(t;), the Hardy-Ramanujan result follows. But more impor-
tantly, for the first time, the role of probability theory in the study of additive
functions could be perceived because (2.1) is essentially an estimate for the second
moment (variance) of f. :

This led Turén's Hungarian colleague Erdos to an activ;a study of the mean values
of additive functions [7; I,II,III]. The efforts of Erdds culminated in two major
theorms which clearly set the study of additive functions on a firm probabilistic
foundation. One of these established jointly with Wintner [9], provided necessary
and sufficient conditions for the frequencies

3—; b |
n<x
f(n)<v

of an additive function to converge weakly (in v) as x + ». The second, established
jointly with Kac [8], considered the value f(n), 1 < n<x, in terms of sums of
nearly independent random variables, one for each prime p < x. When compared to a
sum of independent random variables, it showed under the influence of the Central
Limit Theorem that

v 2
lim E_(v) = 6(v) = —t— [ ™ 12 4 (2.2)

x> e




for all real strongly additive £ for which

f(p) = 0(1) , and Bz(x) » o with x , 2.3)
where
v =21 ; (2.4)
» * n<x

f?n) =A (x)<v Vi B(x)

(In establishing (2.2) they made crucial use of a certain sieve estimate due to
Brun; further light on this will be shed in §3.) Thus the study of additive
functions (alterﬁatively Probabilistic Number Theory), gained momentum.

For additive functions taking certain simple values on primes, Refnyi and Turan
[18] demonstrated that an alternate elegant treatment is possible. More precisely
with z= ei“, u real, they noticed that the sum of multiplicative functions

DI @.5)
n<x

could be estimated asymptotically by familiar amalytic techniques. The sum in (2.5)
is related te the characteristic function (Fourier transform) of the distribution
Fx(v) and hence leads to the determination of the limit of Fx(V) as x > o, In
particular for v(n) they used (2.5) to explicitly calculate the rate of converg-
ence in (2.2).

The next major advance was made by Kubilius in 1956 [15], who successfully com-
bined all of the above ideas (see also [16] for a more elaborate treatment). By
employing several tools from probability theory such as infinitely divisible distri-
butiot}a, independent random variables and characteristic functions, he obtained
necessary and sufficient conditions for the frequencies Fx(v) in (2.4) to con-
verge weakly (in v) as x >, for all functions of a certain class H. This

class comprised of all strongly additive functions for which Bz(x) > o with x

and
B, (x) g
2 log x
pe = &> o ,
B—2 ) >1 as x >« for some a = a(x) log vy (2.6)

He produced the first major examples of additive functions f with the limit in
(2.2) different from the Gaussian distribution. Kubilius was able to determine
the 1imit ¢(v) of the characteristic functions q:x(v) of Fx(v) and thus, in
principle, determined the weak limit of Fx .

In a somewhat different directionm, it was realised soon after Turan established
(2.1), that it would be useful to generalise it to arbitrary strongly additive
functions. This was done by Kubilius in 1956 who showed that
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% lEm-a60]? < xB, (0 @.7)
ncx -

holds uniformly for all such f. Special cases of (2.6) were used by Erdds-Kac,
Erdos-Wintner and Kubilius to establish their distribution results. There will be

more on this in the sequel.

§3. Brun's sieve in Probabilistic Number Theory

~ First we sketch the ideas due to Erdos-Kac.
For each prime p define a function
1=1f>p (%

p_ (n) =
P 0 if ptn .

Then every strongly additive function can be written as
f(n) = L £(p)p_(n) .
P P

The functions pP have the property that in the interval [1,x]

1 with probability ~ 1/p
p (mn) = l,for p=o(x) .
P 0 with probability ~(1-3)

Also, for p=o0(x), the pp(n) are nearly independent in. [1,x]. The idea is to

' ~compare f(n) with the sum

X=)x
P

of infinite independent random variables defined by
f(p) with probability  1/p
P 0 ° with probability 1 -% g
I1f Bz(y) > o with y, it follows that the random variable
Xooom o-dad X 5 (3.1
y p<y P
has mean and variance asymptotically equal to A(y) and JB(y) respectively.
Furthermore if £(p)=0(1), then by the Central Limit Theorem the random variable

(x, -4/ 3G ; 3.2)

has a distribution function —> G(V) as y ¥ «,



It is only natural to compare the quantity in (3.2) with
{fy(n)-A(v)JIJB(v) s 3.3)
where fy(n) is the truncated additive function

fy(n) T £(p) - (3.4)
pin
Py

While comparing (3.2) and (3.3), Erdos and Kac required an estimate for the quantity

o(x,y) = X1
n<x

p(@)>y
On a probabilistic basis one expects that

Oifg,y) ~x . (1 -10 ey | ek oL 4 ® - (3.5)
i ~
- In fact they observed that the random variables in (3.2) and (3.3) have asymptotic~-
ally the same distribution function (the Gaussian) if (3.5) is true. Burn's sieve
method shows that (3.5) holds so long as

a = log x/log y >~ with x .

(In fact (3.5) is false if a->  with x!)
To complete the transition from f (n) to f(n) they used Turan's inequality
(2.1) to deduce that for the function f=f- fy

2 (F@-a_())% = o(xB, () 3.6)
n<x £
holds for a suitable choice of y and o > «, on the basis of (2.3).

Although it was implicit in the work of Erdds-Kac that their method applies
more generally to sets S §§Z+ where the analogue of Brun's estimate (3.5) holds,
this was carried out only by Kubilius some years later. In doing so Kubilius used
the method of characteristic functions and thus avoided the use of the Central
Limit Theorem. This enabled him, amongst other things, to consider additive
functions of growth faster than in (2.3) and therefore could obtain significant re-
sults with limiting distributions other than the Gaussian.

Consider a set S for which (1.4) and (1.5) hold. Assume also the following
precise version of (1.6): For each b there exists ¢ such that

¥ T e (3.7)
Ry @) | b By

d<X/10g°X °g




It is known by the Combinatorial Sieve (i.e. Brun's sieve) method (see Halberstam-
Richert [12], p. 83) that

S v = T s ~T B CARl el b ket . (3.8)
B s by T
p(m)>y

Therefore consider independent random variables

f(p) with probability w(p)/p

P 0  with probability 1 -"-’-%2)- ;
Also let
, 2 =
Fx,y(v) - b ni’ms a and set Fx,x(v) = Fx(v) 1 (3.9)
£ @-AG)<v 5,0

Kubilius' first step was to show that if the distribution func‘tion of the ran-
dom variable in (3.2) tends to a weak limit F(v) as y * », then Fx,y(v) also
tends weakly to F(v) as x *> o, provided o« * «». This was a consequence of (3.8).
In order to determine F(v) he noted that it suffices to compute the limit of the
characteristic functions cpy of the random variables in (3.2). By combining the
idea of infinitely divisible distributions with the independence of xp he showed

that ¥ Til
Un ¢ (v) = exp{| ST ak)h (3.10)
> y -0 : ;
y u
provided
2 ;
fie® 21 5 £ o) | K(u) almost surely in u . (3.11)
X > oo Bz(x) P i

PSX e
£(p)su VB, (x)

Ideally we want to make the transition from fy(n) to f(n) by appealing to an

upperbound of the sort

X

T (E@-A6)% = o®,(x) , as x> . (3.12)
n<x, nes f R

But (3.12) is not at all easy to establish gemerally. If the £(p) do not
grow fast, namely, if
{max f(p)]/\fBz(x) >0 as xX > o , (3.13)
p<x

then (3.12) can be shown to be true provided we choose y and a > » optimally.
The limiting distribution then, is Gaussian.



In order to get different limiting distributions Kubilius needed to consider
larger values of £(p). More precisely he required the expression on the left of
(3.13) to be bounded away from zero. In such a case, an analogue of (2.1) for S
is insufficient to establish (3.12). It is for this reason that he required an in-
equality as general as (2.7) but then this is simply not true for subsets S of Z+.
When S==Z+ there is no problem. So in this situation Kubilius used (3.10) and
showed that (3.11) was necessary and sufficient for the weak limit of Fx(v) to
exist, for functions f of the class H. The growth condition (2.6) arises natur-

ally out of (2.7) for then
.

1T Em-a_)’ <« (8,x)-B,()) = 0( B,(x) - (3.14)
n<x £

On the other hand for subsets S Kubilius could only treat the Gaussian case satis-
factorily, because then it was possible to prove (3.12) by choosing y,a > » opti-
mally, whereas one does not yet know how to establish an analogue of (3.14) for
ne S. >

The methods of Erdos-Kac and Kubilius yield no information about the moments
of f although they make crucial use of an upper bound for the "second moment" of
f(n)-fy(n), about A?(x). Forlsome reason the estimation of moments has until now
remained out of the Sphere of the powerful methods of probabilistic number theory
and sieve theory. But then our technique brings these moment estimates within the
control of these sophisticated tools. Before we describe this, we first review

some early work on the moments of additive functions, in the next sectiom.

§4. The method of moments

Motivated by Turan's inequaiity (2.1) Mark Kac suggested, first in a letter to
Turdn (see Elliott [5], Vol. 2, p. 18) and later in an address to the American Mathe-
matical Society [14] that one ought to try and estimate asymptotically the expression

: 11 w7 P E Y -108 LeskT” For k=1.2,3 0k ecs G%.1)
x(log log x n<x

With the notation Fx(v) in (2.4) now applied to v(n), the quantity in (4.1)
is

©

j’ vdex(v), k=1,2,3,..
Kac's idea was that evaluating the limits of these moments would lead to the de-
termination of the weak limit of Fx(v), which in this case G(V).
A Turan felt he could do this on the basis of the method underlying (2.1), Onme
has to expand the quantity in (4.1) using the Binomial Theorem and estimate the

various terms using familiar results on primes. For some reason Turan did not




carry this out; perhaps he suspected the great complications that these computations
would involve.

The first to successfully compute the moments in (4.1) was Delange [2], but it
‘was only after the Erdos-Kac Theorem was proved. Delange interpreted the terms
arising out of the expansion of (4.1) in terms of the coefficients of a suitable
generating fqnction, and employed analytic tools to evaluate these coefficients.

But in 1955 Halberstam attacked this problem in a purely elementary manmer. He
in fact succeeded in evaluating the moments for all functions satisfying (2.3). More
precisely for these functions he showed [11; I] that

0o

1 k k
lim Y (f(n)-A(x)) = v dG(v) = B 'S B e §0 B S0
el xB_z (x‘)'sz AL .Y_w e

Consequently Fx(v) > G(v) as x > =,

In order to prove (4.2) Halberstam also needed to establish first a similar re-
sult for fy(n) and then had to make the transition from fy(n) to f(n) by show=-
ing that

/2

Y |fy(n)-f(n)|k P ol L e TR %.3)

n<x

for a suitable choice of y and a >« with x. This was no problem for functions
satisfying (2.3). Since his method was elementary he [11;II,3ZII] could successfully
apply it to sets such as

s {p+a| p=prime} , where a ezt %.4)

or
S(Z) = [Q(n)l n ez+] , where Q(x) eZ+[x] :

by which time it was realised that (2.3) could be replaced by the weaker condition
(3-13).

After Halberstam's proof of (4.2), Delange [3] noticed that it could be estab-
lished also by his analytic method involving generating functions. In fact, after
Kubilius announced his general distribution results, Delange [4] observed that sim-
ilar results could be obtained by his method also provided one imposed further

growth conditions upon £f; mnamely

{max £(p)} <« \/Bz(x F (4.5)
p<x
in addition to the growth condition (2.6) of the Kubilius class H. Thus Delange
was the first to realise that limiting distributions other than the Gaussian could

be obtained by the moment method. The use of generating functions and their de-
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pendence on the Euler products, restricted the kind of sets that Delange could treat.
For instance while considering arithmetic progressions, he needed various analytic
and multiplicative properties of Dirichlet L-series.

The elementary approach of Halberstam makes use of (4.3) which is not obvious
for general subsets S, or when f(p) 1is large. In fact Halberstam used (4.3)
only when conditions such as (3.13) held, and so the limiting distribution was al-
S(l) and S(z),
limiting distributions other than the Gaussian arise as a consequence of the moment
method. Barban showed by means of a trick (see [5], Vol. 1, p. 173, Vol. 2, p. 29)
wvhich avoided (3..12),vthat analogues of Kubilius' distribution theorems hold for S(l).
@ the only limiting distribution known with B2 (x) » o, 1is the Gaussian

ways Géusaim.» It is thus not known for instance, whether for sets

But for S
distribution.

We shall show by means of our method that for S(l) it is possible to obtain
limiting distributions other than the Gaussian with B2 (x) > ©», by evaluating the
moments asymptotically. (In this regard S(z) still remains a problem when
deg' Q > 2.) We make use of the bilateral Laplace tramnsform to retain the elegance
of Delange's generating functions. But then, since our method is based upon the
combinatorial sieve, an elementary tool, it retains the wide applicability to sets
S §z+ as in Halberstam's approabh. Without much further ado, we proceed to des-

cribe this technique.

§5. Multiplicative functions and bilateral Laplace transforms

In order to estimate the moments of a strongly additive function £(n) for
n e S we begin by considering its moment generating function, namely, its bilateral
Laplace transform. $So let Fx y(V) be as in (3.9). Now define
b}

o

T (7,68 = T,y = [ Ve W

> e-uA(y)/ VB, @) e uf (n)/ VB, )
- e B TS, T TR 22® }
X n<x, nes »

(5.1)

whei'e u is real. We set Tu(x,x) =Tu(x).
Ideally we would like to extract the moments of f from Tu(x) in the follow-

ing fashion:

- k
Kk 4

j‘ VF, (V) = S T @ | g

du

- 00

The following lemma shows how this could be done rigorously.

Lemma 1: Let Fx be a sequence of probability distributions. Suppose there is
R > 0 such that



1"

e

f @ <1 for Rcugr. (5.2)

- 00

]

k k!
j‘ VdE (v) « 5 for k=1,2,3,... . 5.3)
x R

- 00

If in addition to (5.2) we have %

o N
2 1im ‘S‘ eVar (v) = £(u) , uniformly for -R<u<0 (5.4)
X > o = & :
then 5
a | vhaF_(v) = b, exists for k=1,2,3,...
X > ® = =

Also there is a probability distribution F(v) such that

0

"‘k"j PG k=1.2.3,...

and
lim Fx(v) = F(v) (weakly in v) .

X >

If £(u) can be extended analytically in [z| <R then

dk
o B ks [ S
dz

For a proof of this lemma see [1].
We want to apply this lemma to the -sums Tu(x) and Tu(x,y). We study closely
the situation £ > 0. The strongly multiplicative function

uf (n)/ v B(x)

gn) = e is always > 0 . 5.5)

Two cases now arise:

Case 1: u<0=0<gh) < 1.

Here we shall use the combinatorial sieve to obtain upper bounds for Tu(x)
for all such g,. and also estimate this sum asymptotically for certain g. This
will be interpreted in terms of (5.2) and (5.4) in Lemma 1. More on this in §6.

Case 2: u>0= g(n)_g ;o

Here we shall obtain upper bounds for Tu(x) by various methods. These
methods will depend 8n the kind of information imposed upon Rd (x), and are des-
cribed in §7. As in Case 1, these bounds will be related to (5.2) in Lemma 1.

We now proceed to describe how we treat Case 1.
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§6. A new application of the combinatorial sieve

Let g(n) be a strongly multiplicative function satisfying 0< gn)<l1.
‘We shall view the quantity

% a g(n) (6.1)
n<x
nes

as the residual amount after a sieve process.
We begin with the sum Sl(x) containing weights a for each n € S. For the
prime 2, we remove from the weights a corresponding to even n e S, the amount

an(l-g(Z)), so that these weights shrink to
- v

1) ang(Z) if ne S 1is even
a ==

R a, if . .n-e S 1is odd. .

,... be the sequence of primes in increasing order. Our sieve

Let PysPyseces Py
will be described inductively as follows. Assume that the sieve has been employed
on Sl(x), up to the prime Pp_1° and that the original weights a have shrunk

to aﬁk-l). Then corresponding to the prime p, we shrink the weights aék'l) in

the following fashion:

a® Do) 1f nes 1s = 0 (mod p,)
N & s " 5 (6.2)
= a(k-l) if neS is # 0 (mod pk) :
n
Thus for n € S which are multiples of , the amount a(k-l)(l-g(p )) 1is re-
Py n k

moved from the previous weights aﬁk'l). So if this sieve process is carried out

until the last prime P, < x, we have

= a g = Z.aél) ; (6.3)
ncx n<x
nes nes

It is easy to see that this is equivalent to saying

Lagm@= Za Iu@e @, (6.4)
ngx n<x - dfn
nes nes

where g* is the strongly multiplicative function defined by
g (@) = 1-g(p) for each p . (6.5)

The expression in (6.4) describes the 'inclusion-exclusion procedure' in our sieve.

at



