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PREFACE

For the most part the topics treated in this book may be found in any
of the multitude of books that have appeared in recent years treating such
subjects as college algebra and trigonometry, introductory college math-
ematics, pre-calculus mathematics, etc. For more than ten years we have
been involved in teaching and developing those freshman mathematics
courses for which these books were written. During that time we have
used and perused a number of these books. We realize that no book will
please any teacher in all respects—every book has its weaknesses as well
as its strengths. However, we have felt for some time that the vast majority
of these books lack a basic ingredient—mathematical integrity.

When we say a book lacks integrity, we mean that it is a collection of
more or less unrelated topics, treated in a cursory fashion, with no unifying
principles, and in which the “rules of the game” have not been clearly
stated. An excessive number of undefined terms are introduced, frequently
without being so labeled. Definitions, if given at all, are often inadequate.
Proofs of statements about real numbers are frequently made to rely on
concepts and axioms from geometry which have nothing to do with real
numbers. The result is that the student does not know what he can and
cannot assume in carrying out proofs and solving problems.

Our purpose then in writing this book is to develop a body of math-
ematical ideas in a logical, coherent fashion with a minimum of undefined
terms; to stress the nature of proof—its relationship to undefined terms,
axioms, and definitions; to present material which is essential, not only to
a proper treatment of calculus, but also to a sound development of ad-
vanced algebra and analysis.

Occasionally when developing a particular topic in this manner, a basic
theorem is required whose proof is somewhat lengthy and difficult. How-
ever, subsequent theorems follow with considerable ease. In some instances
it may be advisable to state the basic theorem without proof and to proceed
with the rest of the topic. The proof can then be discussed at a later time.

In many instances proofs of theorems have been relegated to the problem
sets, and occasionally ideas essential to subsequent developments have been
introduced in the exercises. As an aid to the instructor, problems which

ix



X PREFACE

may be subsequently referred to, or which are especially important, are

marked with a t. Difficult problems are marked with an *
Frequently we have found it necessary to introduce examples and prob-

lems involving concepts not yet developed in the text (for example, real
numbers and mathematical induction in Chapter 1). This is necessary in
order to provide motivation and to illustrate the concepts under discussion.
However, such examples are not part of the logical development, which
could well proceed without them. These illustrative examples are quite
simple and are taken from mathematics which most students have studied
in high school.

Definitions of several fundamental concepts (such as function) appear
in more than one chapter. This permits a greater degree of flexibility in the
use of the book in that certain chapters may then be omitted with a mini-
mum of “back-tracking.” In this regard we list below several suggestions
for selecting chapters to suit various one-semester courses. The entire book
may be used for a year course of 8-10 units.

. College Algebra and Trigonometry (4-5 units)
Chapters 2, 4, 5, 6, 8,9, 11 (and the first part of Chapter 1).

2. Number Systems (for teachers’ institutes) (3—4 units)
Chapters 1, 2, 3, 4, 5.

3. Cultural Mathematics (Liberal Arts students) (3—4 units)
Chapters 1, 2, 6, 10.

4. Foundations of Mathematics (elementary) (3 units)
Chapters 1, 2, 10.

The Instructor’s Manual contains suggestions for abridging the various
chapters and also provides supplementary solution sets.

A.R.L.

G.C.P.
November, 1965

San Jose, California
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1 INTRODUCTION

In the study of logic we are concerned with propositions and propositional
functions. The latter will be developed after the concept of ““function”™
has been introduced.

A proposition 1s a statement to which can be assigned one and only one
of the values, ““true,” or *‘false,”” which are considered as wundefined or
primitive terms. In fact the word “‘statement” shall remain undefined.
We assume that the terms ““true” and ‘“‘false’” have meaning to us, and we
require of a proposition only that it have one value or the other, but not
both. A statement not having this property is not a proposition and will
not be considered in the development of our logical system. The following
are examples of propositions:

(1) 24+3=17.
(2) There are a trillion stars in the universe.
(3) There are 52 states in the United States.

Note that a statement may be a proposition even though there may
exist no immediate or practical method for determining whether it is true

or false (in our system).
On the other hand, consider the following “statement.”

The statement in
this box 1s false.

If the statement 1s ““true,” then it is ““false” and vice versa. Hence this
statement is not a proposition. We shall regard such statements (collections
of words) as meaningless.

N.B. In the development of the theory of logic and sets we shall make
generous use of what is usually called “High-School Mathematics.” This
will be done primarily in the examples and exercises for the purposes of
illustrating and clarifying the concepts. In this regard we shall use the terms
“true,” *‘false” in their usual sense. For example, 2 + 3 = 5 is a true
proposition, while 5 > 11 (5 is greater than 11) is a false proposition. In
subsequent chapters certain of the topics comprising High-School Mathe-
matics will be developed from basic principles.

2
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2 COMPOUND PROPOSITIONS:
CONNECTIVES ‘

Propositions may be combined in various ways to form other proposi-
tions. A mechanism for doing this is called a connective. When connec-
tives are used to combine propositions, the result is called a compound
proposition. The five basic connectives used in logic—conjunction, dis-
junction, negation, implication, and equivalence—are treated in §§3-7. We
shall denote arbitrary propositions by p, g, r, . . ..

3 CONJUNCTION: AND

We may join two propositions p, g with the word *““and’ and write **p
and ¢, or in symbols “p A g.” The statement “p A ¢ then becomes a
proposition provided we specify how the fruth values, ‘‘true,” *‘false,”
are to be assigned. Letting “T" stand for *““true™ and “F” for *‘false,” we
can accomplish this by constructing a truth table for “p A g.”” The symbols
p, q, p N\ q are placed at the head of a column of the table (Figure 1-1),

p|la| pag

T T | T

T|F F |  Figure 1-1
F T F

F|F ;

with “p A ¢ heading the last column. We next fill in the columns headed
by p, g with all possible combinations of T and F. (For two symbols there
are 2° combinations.) We then assign values to the boxes in the column
headed by “p A ¢.”” The manner in which we do this is arbitrary, but our
choice is guided by the kind of mathematical system we wish to construct.
The table in Figure 1-1 is the one usually given for “p A ¢.”

Observe that “p A ¢ is false in every case except that in which both
propositions have value T. *“p A ¢ 1s called the conjunction of p with g

3



4 CHAPTER 1 e LOGIC AND SETS

(in that order). The connectives “or,” “not,” “implies,” ““is equivalent to,”
will now be taken up in order.

4 DISJUNCTION: OR

“p or ¢’ in symbols “p V g is defined by the table in Figure 1-2.
Note that a disjunction is true whenever either or both of the propositions
are true. It is false only when both propositions are false.

P |9 Pvq

T T T

T | F T Figure 1-2
F I T T

F | F F

5 NEGATION: NOT

“Not p,” in symbols, “~p” is defined by the table in Figure 1-3. Note
that negation merely reverses the truth value of the proposition.

T | F Figure 1-3

6 IMPLICATION: IMPLIES

“p implies g, in symbols, “p = g,” is defined by the table in Figure 1-4.
The proposition preceding the arrow is called the antecedent or the hy-
pothesis of the implication, while the proposition following the arrow is
called the consequent or the conclusion. An implication is true in every case
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Pl g | P=>9

T T T

T| F F Figure 1-4
FIT T

F F T

except the one with true antecedent and false consequent. It is important to
note that a knowledge of the truth value of an implication gives no infor-
mation about the truth value of the antecedent and the consequent sepa-
rately. Thus, by asserting the truth of an implication, “p = ¢,” one merely
asserts that it is not the case that p is true and q is false.

Examples.
(1) 2>5=4=2 (F = F, true)
(2) 2>5=2F3=3 (F =T, true)
3) 6>3=2+4+3=25 (T =T, true)
(4) 6>3=4=2 (T = F, false)
S (R>3)AB>4))=2>4 (F = F, true)

Other terminologies for “p = ¢’ are:

“If p, then g;”
“p 1s sufficient for ¢g;”
““g 1s necessary for p;”

iiq’ ifp;!'!
“p only if g.”

7 EQUIVALENCE: IS EQUIVALENT TO

»

“p i1s equivalent to ¢,”” in symbols “p < ¢’ is defined by the table in
Figure 1-5. Thus we see that an equivalence is true when and only when
the two propositions have the same truth value. Whenever p < q is true,
we say that p, g are (logically) equivalent propositions. Thus any two false
propositions, or any iwo true propositions are equivalent.

Other terminologies for p < ¢ are:

“p if and only if ¢’ (abbreviated “p iff ¢”°);
“p is necessary and sufficient for ¢’ (abbreviated “p is n.a.s. for g”).
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P | g | p<i=>q

T | T T

i | ¢ : Figure 1-5
F | T F

R T

N.B. In the sequel, whenever a proposition such as an implication
“p = ¢" or an equivalence “p < ¢ is asserted without qualifying remarks,
or the student is asked in an exercise to prove that *p = ¢"" or that “p < ¢,”
the student should always interpret this to mean that the implication or the
equivalence is true, or should be proved true (see problems 5-10). Thus
the statement “x is a square implies x is a rectangle” should be interpreted
“It is true that x is a square implies x is a rectangle.”

Example 1. Let p, g, r have truth values T, F, T, respectively. Determine

the truth values of the following:

(1) p A ~q

2) (pVg=r

3) (p A ~r)=~q

4) [~(p A @)= ~(pV ~r)

Solution.

(1) pA~q
T A ~F
T A T, true
p A\ ~qis true

(2) (pVag=r
(TVF)=T
T=T, true
(p V q)=>ris true

B) (pA~r)=~q
(T A ~T)= ~F
(TAF)=T
F=T, true
(p A ~r)= ~q is true
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4 [~pA@le~pV ~r)
[~MT A F)l & ~(T V ~T)
T AT
T < F, false
[~(p A q)] & ~(p V ~r) is false

Example 2. Show that for all propositions p, g the following proposition
is true:

(p=q) & (~q = ~p)

Solution. We construct a truth table (Figure 1-6) whose last column is
headed by the given proposition.

p q p=—>q ([~q|~pP | ~vq=D~p (p=)q)(=) (~q ==)>~p)
F : : + = :
T | T T F | F T T
T|F F T|F ; T
F [T T F | T T T
! -
Fqr T T | T T T
Figure 1-6

Since the last column consists entirely of *‘true’ values, the given
proposition is true for all propositions, p, g.

P EXERCISE 1

1. Let p, g, r have truth values F, F, T, respectively. Determine the truth value
for each of the following:

(@) (~~p)=g e) p=(@Vr)

(b) (p A~r)=~q 0 (pAg=~@gVr)

) pVI@AT) 2 [~p V gle [(~p) A (~q))

d (pVa APV (h) [p=@ V lep A~q)=r]

2. Given p: Grass is green (t_rue)
q: The sky is blue (true)
r: 24 3 = 7 (false)

Express each of the following in symbolic form using p, ¢, r and connectives,
and determine the truth value of each:
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(a) Grass is green, and 2 4 3 = 7,

(b) If the sky is not blue, then grass is not green.

(c) Grass is green 1is necessary for 2 + 3 = 7.

(d) Grass is green or the sky is blue, is necessary and sufficient for 2 4 3 = 7.
(e) 2 +4 3 = 7 1s a sufficient condition for the grass to be green.

Given p: The earth is round (true)
g: 7 > 10 (false)
r: Men are beasts (false)

Express the following compound propositions in good English and determine
the truth value of each.

@ p=@Vr)

(b) (p A ~r)e (~q)

) [~p Agl=(V ~p)

(d) ~(pV ~r)

e) [~(p ANl l(~p)V (~r)

Let p, g, r be unspecified propositions: Show that whatever the truth values of
p, g, r may be, the following compound propositions are true.

@ (~~p)e=p

(b) [pV@VDNDe=[PVeVr
) (p=q =@V ~p)

d) (p=q)=~(p N ~q)

) [(p=aq) A@=r)= (p=r7)
() [~ A gl [(~p) V (~q)]

Let p be a true proposition. Let ¢ be an arbitrary proposition. Prove g= p.

. Given: (~p)=> ¢ for every gq.

Prove: p 1s true.

Let p, g be arbitrary propositions.
Prove: (a) (p Ag)=p
b) p=®@Vq)

Let p be false. Prove p=> g for every q.

Given: p=>gand r=s
Prove: (@) (p Ar)=(@ A 9)

(b) (pVIN=@Vy5)
(Hint: Consider the possible combinations of truth values for p, g, r, s.)

Given: p=yq
Prove: (a) (p Ag)<=p
B (kVa=gq



