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Preface

The purpose of this book is to further the applying of mathematics to computer graphics. It
is written from the conviction that not only is mathematics beautiful in itself, but that
applying mathematics is a beautiful thing to do.

We include sections giving the reader what can serve as a reminder of, or as a
compact introduction to vectors, matrices, groups, and complex numbers, to the level
required for the main exposition. A high priority is given to visual illustration and examples.
There are exercises which the reader can use if desired, at strategic points in the text,
gathered together and sometimes extended at the end of each chapter. When an exercise
number is marked thus vV, there is an answer or hint in selected answers just before the
index. In the introduction we suggest some easy ways in, where to find purely pictures, light
reading, or material requiring diligent commitment, depending on what rewards one seeks at
the time.

These days, the mathematics of computer graphics could surely not be compassed in
a single book. We do not for example build up from scratch the apparatus of elementary
calculus and coordinate geometry. However we do offer a study of transformations and
symmetry in the plane, with applications to producing patterns by computer (Chapters 1-6).
We classify length-preserving transformations in 3-space, with techniques from vectors,
matrices and geometry, and show how to actually do a considerable variety of things,
culminating in rotation by quaternions and in-betweening solid motions in 3-space (Chapters
7-9). The topology part of the book (Chapters 10-13) contains a variety of applications,
interesting and important in their own right, such as Newton's method of solution, extrema
of continuous maps, and the Principle of Linear Programming. At the same time it gives the
base for properties and constructions of fractal images via iterated function systems and
Mandelbrot and Julia sets (Chapters 14-16).

Much of the material of this book began as a graduate course in the Summer of 1988,
for PhD students in computer graphics at the Ohio State University. My thanks are due to
Rick Parent for encouraging the idea of such a course, to Phil Huneke for enabling me to
give it as a visiting faculty member in the mathematics department, and to Charles Csuri for
encouraging the idea of the book. I thank Eiichi Bannai for his original invitation to come to
Ohio for our joint work (on t-designs). I am indebted to Robin McLeod and Tektronix for
an Academic Scholarship award and for an instructive week of computer graphics at
Tektronix Beaverton, Oregon.

A further part of the book was developed from a course for Final Year mathematics
students at the University of Glasgow. I thank my department for three months leave to
begin the book. I thank the Glasgow Mathematical Association, Maclaurin Society, and St.
Andrews University mathematics department, for opportunities to air some ideas to an
audience.

I am much indebted to John Patterson for checking the draft text with care and detail
beyond the call of duty, and for many helpful comments. My thanks too for comments on
parts of the text, to Ian Anderson, John Jeacocke, Alistair Kilgour, James Logie, Adam
McBride, Finlay Mc Naughtan, Ian Murphy, and Edmund Robertson. In a different vein, I
thank Keiran Clenaghan for running Computing Science student projects based on Chapters
1-6, and the many enthusiastic school students who spur my faith in the seventeen plane
patterns each Open Day. Also Jim McNally for finance and publicity via our Enterprise in
Higher Education department. On the last two counts thanks are due to Scotsys Computers
for their kind loans of equipment. Also on the British scene, I thank Rae Earnshaw for
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organising excellent international conferences that helped acquaint me with the people and
ideas in computer graphics.

The text was prepared as camera-ready copy by the author in Microsoft Word on an
Apple Macintosh Ilci and printed on an Apple Laserwriter. Typesetting of mathematical
formula was done mainly with Formulator, and diagrams drawn with Superpaint. Further
software used, in addition to Pascal programs written by the author, was: The Game of
fractal images (H.-O.Peitgen, H.Jiirgens, D.Saupe, M.Parmet), The Desktop fractal design
system (M.F. Barnsley), and Explorer (J.Dirksen, B-test copy). In this connection, my
thanks to Adrian Bowman, who lent me his Ilcx when the latter two programs failed on the
Ilci, and as a source of images for the colour plates (care of the Glasgow University
photographic unit).

Final thanks to Keith van Rijsbergen, head of computing science at Glasgow, who
created the series in which this book appears, and to Cambridge University Press for their
resolute patience until the book was finished.

Stuart G. Hoggar
Glasgow, January 1992



Introduction

The person in the being mode will come to the lecture with an idea, a question, in mind.
He will not attempt to write down everything he hears, but will afterwards emerge knowing
more than the person who did. (Freely quoted from Erich Fromm To have or to be.)

It is expected that, rather than work through the whole book, readers will wish to browse or
to look up particular topics. To this end we give a fairly extended introduction, list of
symbols, and index. Each chapter begins with a table of its contents. The book is in four
interconnected parts (the connections are outlined at the end of the Introduction):

I The plane Chapters 1-6.
II 3-space Chapters 7-9.
11 Topology Chapters 10-13.
v Fractals Chapters 14-16.

In each case the easiest chapter is the first cited, but it would be a pity to stop there. Indeed
the results of Chapters 1-2 are foundational for all four parts, sometimes leading to very
pleasant shortcuts of an argument or calculation. On the other hand Chapter 10, whilst
essentially avoiding topology, may be used as a pointer to the rest of the book. One aid to
taking in information is first to go through following a substructure and let the rest take care
of itself (a surprising amount of the rest gets tacked on). To facilitate this, each description of
a part is followed by a quick trip through that part, which the reader may care to follow.

An easy way in. If it is true that one picture is worth a thousand words then an easy but
fruitful way into this book is to browse through selected pictures. Here is one suggestion.
Start with the plane pattern examples of Chapter 5: Section 5.7 and Exercises 5. For some
more, see Examples 4.20 and Exercises 4. An early illustration of a Julia set is Figure
11.14. More illustrations of fractal sets in black and white (not to be despised) are found in
(most of) Figures 10.6 to 10.18 (curves), Figures 14.10 to 14.25, Figure 15.9, and Figures
16.18 to 16.26. Finally, move to the colour plates.

Chapters 1-6 (Part I.) The mathematics is geared towards producing patterns
automatically by computer, allocating some design decisions to a user. We begin with
isometries - those transformations of the plane which preserve distance and hence shape, but
which may switch left handed objects into right handed ones (such isometries are called
indirect). In this part of the book we work geometrically, without recourse to matrices. In
Chapter 1 we show that isometries fall into two classes: the direct ones are rotations or
translation, and the indirect ones reflections or glides. In Chapter 2 we derive the rules for
combining isometries and introduce groups and the Dihedral group in particular. In a short
Chapter 3 we apply the theory so far to classifying all 1-dimensional or 'braid' patterns into
seven types (Table 3.1).

From Chapter 4 especially we consider symmetries or 'symmetry operations' on a
plane pattern. That is, those isometries which send a pattern onto itself, each part going to
another with the same size and shape (see Figure 1.3 and ff.). A plane pattern is one having
translation symmetries in two non-parallel directions. Thus examples are wallpaper patterns,
floor tilings, carpets, patterned textiles, and the Escher interlocking pattern of the
frontispiece. We prove the Crystallographic restriction, that rotational symmetries of a plane
pattern must be multiples of a 1/2, 1/3, 1/4, or 1/6 turn (1/5 is not allowed). We show that
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plane patterns, are made up of parallelogram shaped cells, falling into five types (Figure
4.9). The chapter concludes with examples.

In Chapter 5, guided by the conclusions of Chapter 4, we deduce the existence of
seventeen pattern types, each with its own set of interacting symmetry operations. In Section
5.8 we include a flow chart for deciding into which type any given pattern fits, plus a fund
of test examples. In Chapter 6 we draw some threads together by proving that the seventeen
proposed categories really are distinct according to a rigorous definition of 'equivalent’
patterns (Section 6.1), and that every pattern must fall into one of the categories provided it
is 'discrete’ (there is a lower limit on how far any of its symmetries can move the pattern).
By this stage we increasingly use the idea that, because the composition of two symmetries
is a third, the set of all symmetries of a pattern form a group (the definition is recalled in
Section 2.5). In Section 6.3 we consider various kinds of regularity upon which a pattern
may be based, via techniques of Coxeter graphs and Wythoff's construction (they apply in
higher dimensions to give polyhedra). Finally in Section 6.4 we concentrate the theory
towards building an algorithm to construct (e.g. by computer) a pattern of any type from a
modest user input, based on a smallest replicating unit called a fundamental region (we also
offer software on a disc, see the end of the chapter).

Chapters 1-6: a quick trip. Read the introduction to Chapter 1 then note Theorem 1.18 on
what isometries of the plane turn out to be. Note from Theorem 2.1 how they can all be
expressed in terms of reflections, and the application of this in Example 2.6 to composing
rotations about distinct points. Look through Table 2.2 for anything that surprises you.
Theorem 2.12 is vital information and this will become apparent later. Do the exercise above
Figure 2.19. Omit Chapter 3 for now. Read the first four pages of Chapter 4 then pause for
the Crystallographic restriction (Theorem 4.15). Proceed to Figure 4.9, Genesis of the five
net types, note Examples 4.20, and try Exercise 6 at the end of the chapter yourself. Get the
main message of Chapter 5 by using the scheme of Section 5.8 to identify pattern types in
Exercises 5 at the end of the chapter (examples with answers are given in Section 5.7).
Finish in Chapter 6 by looking through Section 6.4 on 'Creating plane patterns' and recreate
the one in question 13 of Exercises 6 (end of the chapter) by finding one fundamental region.

Chapters 7-9 (Part II.) These chapters build from two to three-dimensional geometry and,
by contrast with earlier chapters, are matrix oriented. In Chapter 7, after recapitulating the
basics of 3-d vectors and coordinates we explain left handed versus right handed triples of
vectors and their use in coordinate systems. The scalar product of vectors is introduced, with
its relation to geometry. Now we consider matrices, determinants, and some applications
such as: calculating areas and volumes, determining whether a triple is left or right handed,
calculating various types of vector products. Finally we show how to determine the matrix of
any plane isometry, using a 3 by 3 matrix if translation is involved.

Chapter 8 is about isometries in 3-space (now translation is included in a 4 by 4
matrix). We begin by proving that isometries can necessarily be represented in matrix form,
determine the effect of a change of coordinate axes, and characterise isometries by their
determinant as always preserving or always reversing right handedness. We determine the
matrices for general reflection, rotation, translation, glides, rotary reflections and screw
isometries, showing that these exhaust the possibilities for 3-d isometries. We introduce a
number of techniques for going back and forth between the geometry and matrix of an
isometry. For example determining from a rotation matrix the direction and position of the
axis, the angle and its sense. Thus we easily compute the composition of any two of the six
types of isometry. Example 8.29 is an application in Molecular graphics. The usefulness of
eigenvalues and eigenvectors for some of these calculations appears. Along the way we



Introduction XV

derive some formulae and methods of practical value which deserve to be better known, such
as (8.11), Example 8.40, Theorems 8.42, 8.49 and Corollary 8.52. We conclude with a list
of where twenty such 'how to' solutions are found in the chapter (a possible quick way in).
Chapter 9 aims to show some benefits of using quaternions as a technique for
calculating with rotations, which comes into its own especially when, in setting up animation
of solid objects, we wish to move smoothly between a whole sequence of translated and
rotated images (key frames) of the object. We cover first the basics of complex numbers
a+bi, where a,b are real and i is a symbol whose square is -1. Indeed the complex numbers
are the smallest set of 'numbers' to include both the real numbers (which they do in the form
a+0i) and a square root of -1. A remarkable consequence of this inclusion is that not only
does every quadratic equation now have a solution, but so does every polynomial equation,
of whatever degree. This is the famous 'Fundamental Theorem of Algebra' (proved in
Chapter 13 but first used, for eigenvalues, in Chapter 8). However the fact that generalises
into 3-d rotations by quaternions is this: a complex number may be viewed as a point in the
plane with polar coordinates r,8. Then, to multiply two numbers, we multiply the values of
r, but add the angles (see Figure 9.5). We introduce the special arithmetic rules (9.15) for
quaternions a+bi+cj+dk, where j.k are further square roots of -1. On reaching Example
9.36 we are ready to calculate compositions of 3-d rotations by using quaternions. Some
nice test cases are provided by composing symmetry operations of Platonic solids
(tetrahedron, square, icosahedron..). Finally in Section 9.4 we show how in-betweening
over a series of key frames may be done by constructing a Bézier-type curve through
corresponding points (unit quaternions) on the three-dimensional sphere in real 4-space.

Chapters 7-9: a quick trip. Do Exercise 7.11 at the end of Chapter 7, checking out the
background of vectors, matrices and determinants in (7.4), Definitions 7.3 and 7.29,
Theorem 7.31 (¢),(d), Theorem 7.32, Rules 7.20 and preceding definition. For Chapter 8§,
pick out three things that look new or interesting from the how to do list on page 177. If
inclined, follow an example and do an exercise on each. In Chapter 9, if new to complex
numbers, first read pages 180 to 186 and note Figure 9.7. For quaternions and rotations
look through Section 9.2.1. Use Theorem 9.30 to do Exercise 25 on page 216, using the
method of Example 9.38.

Chapters 10-13 (Part II1.) Chapter 10 is a fairly easy intoduction to ideas which reappear
throughout the rest of the book, with plenty of diagrams and pictures. We show first how
some phenomena of coastlines and land frontiers can now be 'explained' in fractal terms. It
proves very instructive to introduce Mandelbrot's initiator-generator construction for curves,
from snowflake, to the Sierpinski gasket as curve, to the plane-filling type. Its reformulation
in terms of plane transformations (going beyond isometries but using them) points to
powerful techniques for fractals, which appear first in Chapter 13.

With Chapter 11 we come for the first time to topology. The basics of metric spaces
are covered, where 'metric' signifies that we allow a variety of concepts of distance. This is
emphatically not the esoteric for its own sake, for from Chapter 13 on we reap the benefit of
laws of distance applying to a concept of distance between visual images. The idea of
distance leads to open sets, closed sets, and thence to rigorous and usable definitions of
interior and boundary. Then to a definition of continuous function which dispenses with &'s
and 8's and makes some otherwise hard-to-prove results much easier.

Chapter 12 plays the role of topology, part 2. We define compact sets and prove their
important equivalence in n-space to closed and bounded sets. Some famous results follow on
the benefits of compactness. Much flows from: the image of a compact set under a
continuous function is compact. For example (i) every linear function from n- to m-space has
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a bound on the factor If(x)l/Ix| by which it scales the length of a vector x (important for
iterated function systems in Chapter 14), and (ii) a real linear function on a compact subset
of n-space attains its maximum and minimum on the boundary, from which follows the
Principle of Linear Programming, (12.9). The other key idea in this chapter is
connectedness, agreeing with an intuitive idea in obvious cases. Similarly to the compact
case, the image of a connected set under a continuous function is connected. This has easy
applications to a proof of the Intermediate Value Theorem and working with 'sides’ of a
(hyper)plane. Many results here (as in Chapter 11) are the basis of later study of Mandelbrot,
Julia, and other fractal sets.

Chapter 13 introduces the Hausdorff distance between two pictures interpreted as
subsets of the plane. We prove that the distance laws of Chapter 11 for a metric space are
satisfied. Now we define the 'collage map', sending a plane set E to a new set yE
determined by N plane transformations. We prove the far-reaching Contraction Mapping
Theorem, 13.14 which shows via Theorem 13.28 when the successive image pictures ykE
approach a unique one (this is followed up in Chapter 14). Hausdorff distance also plays an
important role in Chapter 15. A second and interesting application of the Contraction
Mapping Theorem is to the iterative solution of polynomial equations, showing why
Newton's method is better than most. We also use it to show the existence and uniqueness
of a class of differential equations. In the final Section, 13.4, we tie some loose ends such as
the approximation of a continuous function by a sequence of step functions (see the
‘measures’ part of Chapter 15) and a proof of the Fundamental Theorem of Algebra by
topology and winding numbers.

Chapters 10-13 : A quick trip. Use (10.7) to calculate the dimension of the Sierpinski gasket
in Figure 10.7. Examine Figure 10.14 and read page 232. In Chapter 11 note Definitions
11.1, 11.2 and 11.34 then follow Examples 11.41, using the index as necessary. In Chapter
12, take the meaning of compact from Theorem 12.26, note Theorem 12.28, and follow the
proof of Application 12.29. Do Exercise 12.8 on page 301 similarly to Example 12.30 (but
don't forget the hint). For Chapter 13, start by reading the first two pages. Note the (fact of)
applications of Theorem 13.14 to solving equations in Section 13.2.2. Note the existence
and uniqueness of fractals (Theorem 13.28) following from the topology Theorem 13.27
(again, use the index as necessary), and its illustration in Figures 13.8. You may like to see
how winding numbers are applied in Section 13.4.2. For the idea of distance between two
pictures, try Exercise 13.7 on page 327.

Chapters 14-16 (Part IV.) This last part of the book is mostly about fractals. Whilst it
contains material of a technical nature (after all, we are dealing with foundations), there is
much that is relatively easy to pick up. Chapter 14 covers the iterated function systems (IFS)
highlighted and developed especially by Barnsley (1988) and co-workers. We define an IFS,
based on N contractive maps w; of the plane that are affine (linear plus translation), and its
attractor A, a subset of the plane to be interpreted and viewed as an 'image’, or picture. In a
framework from Chapter 13, A is the limit of a sequence of sets A, where A,;; is the
collage wi(Ap) U wa(Ay) U ... u WN(Ay). After some classic attractors, such as Barnsley's
fern, we study affine maps and how to work with them in the IFS and computer screen
context. Now we take the reader through some typical attractors with small N (tree, anvil,
'Moscow by night') and give practice in recognising the transformations that produce such
results. We consider the possibility of finding the component transformations of an IFS to
produce more general images and show the value of the Contraction Mapping Theorem and
its accompanying bound (often translated as the 'Collage Theorem'). We demonstrate the
process for a face requiring twelve transformations.
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Chapter 15 is about the Random Iteration Algorithm (RIA) of Barnsley and Demko
(1985). It produces the attractor of an IFS not by a series of approximations yXE but as a
sequence of points which build up to it. Each successive point is obtained by applying a
random choice of transformation w; from those of the IFS (Definition 15.23). We analyse
the algorithm's effectiveness using an addressing scheme for attractors which is a
generalisation of the binary, ternary or decimal expansions of numbers on the real line. We
investigate whether the RIA might work more efficiently with a less random' number
generator for choosing the w;. Hutchinson's idea (1981), that measure theory ought to help
in working with attractors, comes to fruition very naturally via the RIA (Barnsley and
Demko). Not only shades of grey but of colour are 'measured out', even down to the pixel
level. By Section 15.4, having covered some of the technicalities, we are well placed to
introduce Hausdorff dimension, based as it is on measures. (We take a fractal set as one
whose Hausdorff dimension differs from its topological dimension.) We include the result
that a self-similar set has Hausdorff dimension equal to its easily calculated similarity
dimension.

In Chapter 16 we come to some of the hardest and yet some of the most spectacular
things covered in this book, arising from the dynamics of iterated complex functions f(z).
Thus we start with a function f: C — C (where C is the plane regarded as complex
numbers), an initial point zg, and observe the behaviour of the sequence zg, z1, 22, ..,
(called the orbit of zg) where z,4; = f(z,;). Importantly, this process could be the iterative
solution of an equation (see later). Very influential on the overall outcome is the orbit's
behaviour near a fixed point o of f(z), i.e. one for which f(a) = a. If the derivative (o) has
modulus less than 1 then points z sufficiently near a are drawn towards it (f*(z) — a as
n — o). Such points constitute the basin of attraction A(a), whose boundary is the Julia set
of f. We prove results leading to the computer generation of Julia sets (Constructions 16.44
to 16.46) and to their colour codings which produce some increasingly well-known beautiful
effects. As is commonly done, we study especially the effectively representative case f(z) =
f.(z) = z2+c¢ and introduce its Mandelbrot set M, the set of points ¢ for which J(f) is
connected, or alternatively (a theorem) those ¢ for which f.%(c) does not tend to infinity as n
does (see Construction 16.51). We explore the anatomy of M, which has further interesting
detail at every level of magnification. Indeed M acts as an encyclopaedia of Julia sets in ways
which even include 'snapshots'. Nevertheless M is connected, and we sketch the Douady-
Hubbard proof of this. Finally we investigate the Julia set and basins of attraction for
Newton's iterative method of solution, starting from any complex number, and shed new
light on an old problem.

Chapters 14-16 : a quick trip. Read page 330 and see in Figure 14.1 how frame 2 arises
from frame 1 in the same way as frame 1 arises from frame 0. Consider Figure 14.10 and
Examples 14.19, 14.21, 14.26. Read pages 355-356 then try the exercise below Figure
14.22 or use colour plate 7 to help you understand Figure 14.21. In Chapter 15 look at the
following figures and their explanations: 15.4, 15.8, 15.9, 15.12. Apply ten steps of the
RIA for a Sierpinski gasket by throwing dice. In Chapter 16, start with the Mandelbrot set of
Figure 16.18 in conjunction with page 424 (read Theorem 16.50 rather than the lemma).
Take a look at Seahorse valley via colour plates 9-19. For Julia sets look quickly through
pages 407-409, then pick up on Figure 16.20 and its preceding explanation. See this
exemplified in colour plates 20-24, 27, 28. Note the construction methods on pages 422 to
423 and 425. Finally, look at Theorem 16.68 (Newton's method) and its illustration on
colour plate 30.
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Which chapters depend on which

1-6  Each chapter depends on the previous ones.

7 All depends on Chapter 1; only Section 7.4 depends on Chapter 2.
8 Matrices and vector products from Chapter 7, and Chapters 1,2.

9 As for Chapter 8, plus a little calculus towards the end.

10 Vectors and plane isometries from Chapter 1.

11 Elementary vectors (Section 1.2.1).
12 The definitions and results of Chapter 11;
Elementary vectors (Section 1.2.1).
Linear functions (Definition 8.4 ff.).
13 Isometries and vectors (Chapter 1).
Section 13.4 requires complex numbers (Section 9.1).
Topology: the results and definitions of Chapters 11, 12.
14 Vectors and plane isometries from Chapters 1, 2.
Matrices (Chapter 7).
Certain recapitulated results and the idea of convergence, from Chapter 13.
15 As for Chapter 14, plus iterated function systems (Section 14.1).
Continuity (Section 11.4).
16 Complex numbers (Section 9.1).
Topology: the results and definitions of Chapters 11, 12 and Section 13.4.1.
Note: Sections 16.2.5 to 16.3.2 essentially rely only on results of Chapter 16.

Table of crude chapter dependencies.

A Chapter depends on those it can
‘reach’ by going down the graph.
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1.1 Introduction

One practical aim in Part 1 is to equip the reader to build a pattern generating
computer engine. The patterns we have in mind come from two main streams. Firstly the
geometrical tradition, represented for example in the fine Moslem art in the Alhambra at
Granada in Spain, but found very widely.

Figure 1.1 Variation on an Islamic theme. For the original, see Critchlow (1976),
page 112. The arrows indicate symmetry in two independent directions, and the pattern is
considered to continue indefinitely, filling the plane.

Less abundant but still noteworthy are the patterns left by the ancient Romans (Field, 1988).
The second type is that for which the Dutch artist M. C. Escher is famous, exemplified in the



