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Preface

The work embodied in this volume was presented across three consecutive edi-
tions of the International Workshop on Learning Classifier Systems that took
place in Chicago (2003), Seattle (2004), and Washington (2005). The Genetic
and Evolutionary Computation Conference, the main ACM SIGEvo conference,
hosted these three editions. The topics presented in this volume summarize the
wide spectrum of interests of the Learning Classifier Systems (LCS) community.
The topics range from theoretical analysis of mechanisms to practical consid-
eration for successful application of such techniques to everyday data-mining
tasks.

When we started editing this volume, we faced the choice of organizing the
contents in a purely chronological fashion or as a sequence of related topics that
help walk the reader across the different areas. In the end we decided to orga-
nize the contents by area, breaking the time-line a little. This is not a simple
endeavor as we can organize the material using multiple criteria. The taxon-
omy below is our humble effort to provide a coherent grouping. Needless to
say, some works may fall in more than one category. The four areas are as
follows:

Knowledge representation. These chapters elaborate on the knowledge rep-
resentations used in LCS. Knowledge representation is a key issue in any
learning system and has implications for what it is possible to learn and
what mechanisms should be used. Four chapters analyze different knowledge
representations and the LCS methods used to manipulate them.

Mechanisms. This is by far the largest area of research. Nine chapters re-
late theoretical and empirical explorations of the mechanisms that define
LCS on the following subjects: (1) bloat control for variable-length repre-
sentations, (2) classifier manipulation techniques: classifier ensembles and
post processing (3) error guidance and the exploration/exploitation dilemma,
(4) internal-model driven multistep LCS, (5) effects of class imbalance, (6)
bounding convergence criteria for reinforcement-based LCS, and (7) tech-
niques for dealing with missing data.

New directions. This group of chapters focuses on LCS applied to new and
unconventional problems. Two chapters present work on the usage of LCS as
learning models for system composition where they are used to create com-
plex strategies based on properly assembling basic capabilities. Two other
chapters explore seminal work on LCS as function approximators, exploring
different architectures and methods to efficiently achieve this goal. Another
chapter describes a new way of using LCS for determining relevant variables



VI
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for the predictive process, instead of only focusing on classification perfor-
mance. The last chapter of this group explores formal relations between LCS
and ant colony optimization for the traveling salesman problem, illustrating
how LCS can also be used to solve such a class of problems.

Application-oriented research and tools. The last group of chapters de-

scribes applied research, mostly oriented to data-mining applications. Two
chapters explore and analyze how to improve the performance and accuracy
of LCS for data-mining tasks. Two other chapters explore a more practi-
cal path that involves the creations of tools for (1) assisting the process of
knowledge discovery and its visualization for medical data, and (2) creating
computer-aided design tools that can help designers to identify and explore
application areas where LCS methods can provide an efficient solution.

As mentioned earlier, this volume is based on the 6th, 7th, and 8th editions of
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Analyzing Parameter Sensitivity and Classifier
Representations for Real-Valued XCS

Atsushi Wadal2, Keiki Takadama's3,
Katsunori Shimohara®*2, and Osamu Katai?

L ATR Human Information Science Laboratories,
Hikaridai” Keihanna Science City” Kyoto 619-0288 Japan

{wada,katsu}@atr.co.jp

2 Kyoto University, Graduate School of Informatics,

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 Japan
katai@i.kyoto-u.ac.jp

3 Tokyo Institute of Technology,
Interdisciplinary Graduate School of Science and Engineering,
4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502 Japan

keiki@dis.titech.ac.jp

Abstract. To evaluate a real-valued XCS classifier system, we present
a validation of Wilson’s XCSR from two points of view. These are: (1)
sensitivity of real-valued XCS specific parameters on performance and
(2) the design of classifier representation with classifier operators such
as mutation and covering. We also propose model with another classifier
representation (LU-Model) to compare it with a model with the origi-
nal XCSR classifier representation (CS-Model.) We did comprehensive
experiments by applying a 6-dimensional real-valued multiplexor prob-
lem to both models. This revealed the following: (1) there are critical
threshold on covering operation parameter (ro), which must be consid-
ered in setting parameters to avoid serious decreases in performance; and
(2) the LU-Model has an advantage in smaller classifier population size
within the same performance level over the CS-Model, which reveals the
superiority of alternative classifier representation for real-valued XCS.

1 Introduction

XCS [6] is a learning classifier system which has the potential to evolve accu-
rate, maximally general classifiers to cover the state space for each action [3,7].
XCS takes bit string inputs, the same as traditional learning classifier systems
[2] (LCS). To facilitate XCS and broaden the range of applicable problem rep-
resentation while keeping its generalization abilities, XCSR [8] was proposed by
Wilson to deal with real-valued problems, and he found that XCSR could learn
appropriately on the real-valued 6-multiplexor problem.

Although Wilson analyzed the potential of XCSR, its validity was insufficient
in two respects. Firstly, the parameter settings used for the experiment seemed
to be set ad hoc, especially for the two newly introduced parameters mqo and
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ro that were used in the real-valued classifier operations of mutation and cov-
ering. Secondly, the reason he adopted proposed classifier representation is not
discussed, despite the possibility of other classifier representations.

Therefore, what we focus in this paper are (1) an analysis of the settings
of real-valued XCS specific parameters to evaluate the model; and (2) an anal-
ysis of classifier representation with classifier operators such as covering and
mutation. To achieve the latter, we propose an opponent model that presents
another real-valued classifier representation that was inspired by Wilson’s other
model XCSI to deal with integer-valued input [9]. Although the requirement of
extending XCS to integer-valued input is basically similar to that of extending
XCS to real-valued input, XCSI adopts a different design concept over classifier
representation. This concept can easily be applied to design another real-valued
classifier representation, which we propose and adopt in the opponent model.
For convenience, we have called this opponent the LU-Model and the original
model the CS-Model, names which originate from the attributes used in each
classifier condition that will be described later.

The rest of the paper is organized as follows. Section 2 describes both the
CS and LU-Models by revealing the part extended from the XCS to achieve
real-valued input. Section 3 describes the real-valued 6-multiplexor problem.
Section 4 presents some simulation experiments that were done by applying
both the CS and LU-Models to the real-valued 6-multiplexor problem. Section
5 has discussions based on the experimental results to validate real-valued XCS.
Section 6 is the conclusion.

2 Extensions to XCS for Real-Valued Input

Both CS and LU-Models are based on XCS but differ in their classifier rep-
resentation. This section presents the CS-Model, which adopts XCSR classifier
representation and the LU-Model, where classifier representation is inspired by
XCSLI. It is done by describing their classifier representations in detail, which are
the extended parts from XCS!.

2.1 XCSR-Based Classifier Representation (CS-Model)

This section explains the CS-Model regarding its difference from XCS, which is
equivalent to describing XCSR classifier representation with classifier operators
such as covering, mutation, and crossover. To catch up with recent developments
in XCS called the classifier subsumption mechanism, the “is-more-general” op-
erator has been additionally defined which checks whether the classifier can
subsume the other target classifier.

Representation of Classifier Conditions: The representation of the classi-
fier in the CS-Model differs from the original XCSR in the condition part, which

! The implementation of the XCS part of the CS and LU-Models is based on Butz
and Wilson [1].
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replaces the bit string with a set of attributes named interval predicates by Wil-
son. The interval predicate is composed of two real values (c;, s;) where suffix
i denotes the position in the condition part. Each interval predicate represents
an interval [¢; — s;,¢; + 8;] on the real number line, and if the corresponding
element of the input (which is a real-valued vector) is included in the interval,
matching succeeds. If, and only if, all elements match the corresponding interval
predicates in the classifier condition, can matching be considered a success. The
domain of attributes ¢; and s; are both set between 0 and 1, which inherit the
setting of XCSR in the CS-Model, but is not a necessary requirement for this
representation.

Covering Operator: The covering operator creates a new classifier that matches
a specified input. When a real-valued vector is denoted as (B 5005 Biy w0558 ), Whiere
n is the dimension of input, each interval predicate of covered classifier condition
(c1,81)...(Ci, 8i)...(Cn, 81 is set as follows.

{g _ rand(ro). (1)

Here, ro is a parameter used to decide the distribution range of the spread of
the covering interval, where rand(x) is a function that returns a random value
distributed in the interval 0 < rand(z) < z. The value of ry is set below 1 to
maintain the s; within its domain of [0,1] inherited from XCSR, but is not a
necessary requirement for this operation.

Mutation Operator: The mutation operator mutates the classifier condition
by adding delta values Ac; and As; to interval predicate variables c; and s; at
the constant possibility of mutation parameter y at each interval predicate. Each
delta value for attributes c¢; and s; are calculated as follows.

Ac; = trand(myg) 9
As; = trand(my). (2)

Here, my is a parameter used to decide the distribution range of both Ac; and
As;, where +rand(z) is a function that returns a random value distributed in
interval 0 < rand(z) < x with the sign chosen uniform randomly. If the mutated
value exceeds the domain of [0,1], the value is adjusted to 0 or 1. The setting
for this domain is inherited from XCSR, but is not a necessary requirement for
this operation.

Crossover Operator: The crossover operator works the same as the crossover
in XCS, except that the crossover point is not set between the condition bits but
between the interval predicates.

Is-More-General Operator: The is-more-general operator judges whether a
classifier condition is more general than another classifier condition. The ba-
sic idea of generality is the inclusion of the set of classifier condition’s possible
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matching inputs. If the possible matching inputs of classifier condition X com-
pletely include and are larger than the possible matching inputs of classifier
condition Y, X is more general than Y. This idea can be realized for real-
valued classifier representation by comparing the inclusion of the interval on
the real number line for each corresponding interval predicate. For two classi-
fier conditions X : (c1, s1)...(ci, 8i)...(Cn, $n) and Y : (c1,81)...(c}, 85)...(chy, 8L), if
(ci —si) < (cj —s}) and (¢} + s;) < (c; + ;) for all i except where all attributes
are equal, X is more general than Y.

2.2 XCSI-Inspired Classifier Representation (LU-Model)

This subsection proposes the LU-Model with another real-valued classifier rep-
resentation inspired by XCSI, which is an XCS extended model to deal with
integer-valued inputs. XCSI adopts a different design concept over classifier rep-
resentation, as it specifies the interval by using the value for the lower and upper
bounds. This concept can easily be applied to designing real-valued classifier rep-
resentation that differs from the CS-Model. The details are described below.

Representation of Classifier Condition: The representation of classifier
condition in the LU-Model seems to be like that in the CS-Model as its interval
predicate is composed of two real values (1i, u;), where suffix ¢ denotes the posi-
tion in the condition part. However, the denoting interval on the real number line
differs from the CS-Model. The ith interval predicate simply denotes an interval
(li,u;]. If the corresponding element of input is included in the interval, match-
ing between the element and the interval predicate succeeds. If, and only if, all
elements match the corresponding interval predicates in the classifier condition,
can matching be considered a success. The domain of attributes is restricted to
0 <1; < wu; < 1. This setting for domain inherits the concept of XCSI, but is not
a necessary requirement for this representation.

Covering Operator: The covering operator creates a new classifier that matches
a specified input. When a real-valued vector is denoted as (%1, ..., Ty ..., T,,), where
n is the dimension of the input, each interval predicate of the covered classifier
condition (Iy, u1)...(L;, u;)...(In, uy) is set as follows.

®3)

l; = i — rand(rg)

{ui = xz; + rand(ry).

Here, g is a parameter used to decide the distribution range of the distance from

input value z; to l; and u;, where rand(z) is a function that returns a random

value distributed in the interval 0 < rand(z) < z.If the covering value exceeds

the domain of 0 < I; < u; < 1, l; and u; are set to be kept within their domains as
the follows: if [; is smaller than 0, l; is set to 0; and if u; exceeds 1, u; is set to 1.

Mutation Operator: The mutation operator mutates the classifier condition
by adding delta values Al; and Au; to l; and u; at the constant possibility of



