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PREFACE

This book deals with the theory of sampled-data systems, a subject
_ which has been of increasing interest and importance to engineers and
scientists for the past decade. The science and art of communications
have profited from the realization and application of the fact that
intelligence can be transmitted and stored in discrete pieces or as a
sequence of numbers spaced in real time. As we hope to have shown
in this book, the control systems field can similarly benefit by the utiliza-
tion of this concept. Even though we treat sampled-data systems
- primarily from the viewpoint of the control function, it is not surprising
that many concepts have been borrowed from the communications field.
Control systems are essentially nower deviecsy which respond to intelli-
gence that has been processed in subsystems similar to those in the
communications field. Furthermore, the same body of theory can be
used to describe the over-all performance of the control system, even
though its primary function is the controlled actuation of power elements
and processes.

Sampled-data systems are characterized by the fact that the signal
data appear at one or more points in the system as a sequence of pulses
or numbers. A central problem in the theory of such systems is that of
describing the response of linear continuous elements, or pulsed filters,
as they are sometimes called, to pulse sequences applied to their input.
The use of the z transformation and the all-important pulse transfer
function of the pulsed filter makes this problem relatively straight-
forward. A unique component found in sampled-data control systems
is the digital controller, which is a computer that accepts a sequence of
numbers at its input, processes it in accordance with some logical pro-
gram, and applies the resultant sequence to the controlled element. In
view of the operation of this type of controller, it is possible to implement
it by means of a conventional digital computer or its equivalent in the
form of a mixed or wholly analogue computer. If the numerical process
programmed in the computer is linear, it can be expressed mathematically
in terms of a recursion formula which is transformed into a generating
function having similarity to the pulse transfer function of a pulsed
linear filter. It is not unexpected to find the same general theory apply-
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Vi PREFACE

ing equally well tc pulsed linear filters and to the deseription of linear
numerical processes. Sampled-data theory which is developed in this
book serves as a common base for the analysts and synthesis of linear
digital systems, pulsed eontinuous systems, and their combinations often
found in practiee.

Contributions to the theory of sampled-data systems have been made
by scientists, mathematicians, and engineers throughout the world.
An examination of the list of references and bibliography in this book
will reveal papers from many countries, including England, France, the
US.S.R, and the United States. As in the case of all new fields, the
research papers listed are not equally significant. The philosephy we
have used in writing this book is that a major responsibility of the author
is to sift, evaluate, and interpret the significant contributions. This
is particularly important when a book is among the first, if not the first,
in its field, for all too often its coverage tends to set the pattern for sub-
sequent books. Tt would have been far easier for us to write 2 beok
which is merely an organized compendiura of the papers in the field.
1t has been much more difficult to be selective, and we fully expect that
others who are well-versed in this field may not agree with our choice of
material, :

As a result of the application of this philosophy, this is a rather shor
book. We have tried to avoid overwhelming our readers with verbiage
or confusing them with a large number of disconnected items which
might have been included for the sake of completeness. We have
directed this book to readers who are mature technically and who are
capable of referring to the literature when necessary. To make this
easier, the book is doeumented as fully as possible.

This is not a book for beginners in the field of control systems. It is
sssumed that the reader is a graduate student, practicing engiveer, or
seientist who has had 2 thorough training in differential equations, the
Laplace transformation and its applications, lirear feedback control
theory, and the elements of probability and statisties. On the other
hand, it is an introductory text, and the reader need have had ne prior
contact with the theory of sampled-data systems or numerical processes.
While specifically directed to control systems, there is much material
in this bock which has general application. This inoludes the z trans-
formation, data-reconstruction theory, applications of transform methods
to numerical processes, and the theory of sampled random time functions.

The level of presentation is such that the book can be used as a text
for a graduate course on the subject. Depending on the preparation of
the students, this could be a one-semester gouise of three hours per week
or a two-semester course of two hours per week. In exceptionsl cases,
where the students have had a thorough grounding in linear systems,
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feedback eontrol, and the Taplace transformation, it is possible to use
i

this book in a senior course. The material has alse been used as the
hagis of 4 seminar in which Iiterature study was the main element of the
course.

The authors have been engaged in the study of sampled-date systems
for a number of years and have supervised doctoral research in this
fisld at Columbia University and presently af Stanford University as
well. A strong impetus to the advancenent of this activity was and is
now provided by the United States Air Foree Office of Seientific Research,
under whose auspices much of the resesrch in sampled-data systems
was done at Columbia University. 7This support is gratefully acknowl-
edged by us, our colleagues, and graduate students.

An attempt to list all those individusls who have been of assistance to
us in one way or another would suvely lead to the embarrassment of
having omitted some. Risking this, however, we shall mention a few
snd recognize their many suggesiions with thanks. Included are
Professors Lotfi A. Zadeh, John E. Bertrain, George M. Krane, and
Bernard Friedland, Dr. Rudolph . Kalman, and the many graduate
students and research assistants with whaou we have been associated.

Joun R. RAGAZZINI
Gene I, FRANKLIN
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CHAPTER 1

INTRODUCTION

The trend of the past few decades has been toward dynamical systems
that operate with variables which are in the form of a sequence of num-
bers. These variables are generally quantized in amplitude and are
available only at specified instants of time, which are usually equally
spaced. By contrast, a continuous, or analogue, system has variables
which are continuous functions of time, that is, their values are known
at all instants of time. Both types of system can have imperfections
in the amplitude of the signal variables. For instance, the discrete
system, in which the variables are sequences of numbers, may operate
with these variables quantized so that even if there is no other source
of amplitude error, there is the uncertainty in the magnitude equal to one
quantum. In continuous systems, imperfections in the data-transmis-
sion and transducing devices, as well as unwanted noise, produce uncer-
tainties in the amplitude of the system variables which are similar to ,
those of the discrete systems. The major point of difference between
analogue and discrete systems lies in the fact that analogue, or continu-
ous, systems have variables which are known at all instants of time,
whereas discrete systems have variables which are known only at sam-
pling instants.

A system in which the data appear at one or more points as a sequence
of numbers or as pulses is known as a sampled-data system. A system in
which the data are everywhere known or specified at all instants of time
is known as a confinuous, or analogue, system. This book deals with
sampled-data systems, the theory underlying their operation, and the
synthesis of systems of this type which fulfill certain practical objectives.

1.1 The Sampling Operation

In any dynamical system found in nature, there exist dependent and
independent variables which are related to each other by linear or non-
linear differential equations. In the systems approach, independent
variables are referred to as inputs and dependent variables as outputs.
In complex systems there are also intermediate variables, which are
considered as being internal in the system, although they can be brought

1



2 SAMPLED-DATA CONTROL SYSTEMS

out as outputs should the necessity arise. Assuming for purposes of
discussion that f(t) is a variable of interest, it is plotted in Tig. 1.1 as s
continuous function of time. The plot, or sorne analytic expression for
(@) will desertbe the function completely as a function of time.

If, now, the value of f(¢) is read or sampled at equal intervals of time 7'
so that the function is described by the sequence of numbers

£, [T, 1T, FBT), . . . , frD), . . . (1.1}

it is seen that a limited description of the function f(¢) has been given.
For instance, the value of f(¢) at f(1.57) is not available, g0 that a certain
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Fi16. 1.1. The sampling operation.

amount of information has been lost in the process of expressing f(f)
as a number sequence given by (1.1). On the other hand, if the function
is well-behaved, the intermediate values of f({) can be interpolated
between samples with acceptable accuracy. If the function is not well-
behaved, it means that large and unpredictable variations in f(¢) have
occurred between sampling instants. The number sequence such as that
of (1.1) then gives only a poor approximation of the variable.

It is seen from this simple qualitative discussion that the sampling
frequency must be related to the characteristics of the function being
sampled, lest important information be lost in the sampling process.
At the same time, if the sampling frequency is well chosen relative to the
characteristics of the time function being sampled, only negligible
information is lost in the sampling process. In the latter circumstance,
the use of more samples would merely burden the system by carrying
unessential information that could Have been obtained by the simplest of
interpolative processes. ’

Conaziderations such as these suggest that continuous systems are
capable of carrying and transmitting far more information thap is
required or justified by the dynamical-system characteristics. In the
frequency domain, this is equivalent to stating that a capability of some
components of the system to carry and transmit excessively large band-
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widths is not justifiable if some of the cascaded components transmit
restricted bandwidths. If there are practical advantages to be gained
by transmitting and processing only a seguence of numbers as opposed
to & continuous variable. then a proper selection of sampling frequency
and the use of a sampled-data system seema desirable.

There ave situations wheu the dsta-gathering devices themselves are
capable of producing only discrete sets of numbers rather than a con-
tinnous variable. For instance, a scaaning s2arch racar will generate a
fix on a target only once every scan. In some large-scale radars, thie
might oceur only once every 10 or 15 sec. Betw2en these scans, or
“Jooks,” no information exists as to the variations in target position.
Another possibility is the use of time-shared data links in which informa-
tion can be transmitted only once every cycle time. In such situations, a
system which incorporates one of these devices as an element is, of neces-
sity, a sampled-data system. On the other hand, it will be shown later
that there are certain advantages to be gained by deliberately converting
2 contiruous feedback control system into a sampled-data system. The
use of sampled-data controllers results in systems having dynamical
performance which cannot be matched by the continuous system from
which they are derived.

1.2 Data Reconstruction

It was stated in the previous section that the continuous function
from which the number sequence is obtained can be reconstructed by
processes of interpolation or extrapolation. In numerical computation,
this is done by using many samples obtained before or after the region
of interest. On the other hand, real-time dynamical systems can use
only past samples since the future samples are not known. Thus, data
reconstruction must be a process of extrapolation using only the preced-
ing set of samples. This process is sketched in Fig. 1.2, where a continu-
ous function is being extrapolated from the latest sampling instant at n7T.
The extrapolation in real-time systems is carried ouf for only one sampling
interval, extending from nT to (n -+ 1)T. Since the value of the function
is known exactly at the next sampling instant (n + 1)7, this most recent
value can be used as the base for an extrapolation into the next sampling
interval. Thus, the extrapolation process is reiterated as each new
sample becomes available. There are a number of techniques and
extrapolation formulas which can be used to implement this process.
In all cases, the otjective is to reproduce as well as possible a reasonable
facsimile of the actual time function from which the sample or aumber
sequence was derived.

The reason why data reconstruction is important in the field of dynam-
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ical sampled-data systems is that physical plants and dynamical devices
are basically analogue, or continuous, in form. For instance, in a control
system, the actuator may be an electric motor which responds to a con-
tinuous signal input and delivers a continuous output. If such a motor
is incorporated into a sampled-data feedback control system, continuous
signal at its input must somehow be reconstructed to obtain satisfactory
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Fi1e. 1.2. Data reconstruction process.

operation. The devices which reconstruct continuous data from a
sequence of samples or numbers are generally ealled data holds, exirapo-
lators, desampling filters, or some similar descriptive name. They alt
have the same function and, from the practical viewpoint, they are made
as simple as possible. In obtaining this physical simplicity, accuracy of
extrapolation is often sacrificed.

1.3 Open-loop Sampled-data Systems

A sampled-data system is an interconnected group of dynamical
elements in which the signal data appear at one or more points in the
system as a sequence of numbers. Figure 1.3 shows the simplest form of

o p———0
Continuous Sampled Output
input input Data Continuous
reconstruction element

Fia. 1.3. Typical open-cycle sampled-data system.

open-cycle sampled-data system. As a result of a sampling operation,
the continuous input signal is converted into a sequence of numbers
equally spaced in time by a sampling interval 7. The operation of
sampling is shown schematically by a switch which is presumed to close
momentarily at each sampling instant. The sequence of samples
emerging from the switch is reconstructed into an approximation of the

-
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input function before being applied to the continuous element. The
output of this element is the useful output of the system.

The schematic representation of Fig. 1.3 is intended to show only a
possible sequence of operations, not necessarily the physical elements
‘themselves. For instance, this system could represent a pulse-code
communications system in which the sampling and coding operation
is symbolized by the switch. The quantizing aspect of the operation is
ignored here, since it is assumed that the input is quantized infinitely fine.
Thus, the input amplitude is presumed to be perfect in this representa-
tion. The data-reconstruction element reconstructsa continuous signal
from the sequence of samples as well as i§ practical. Usually, this can be
relatively crude, and the physical device takes the form of a simple
clamp or boxcar circuit. The continuous element is the device which is
being driven by the reconstructed signal, and its output is the useful
signal.

The theory which underlies the performance of this system should
take into account two deteriorating aspects: the quantizing effect and
the sampling effect. Both of these tend to distort or deteriorate the
signal in some way. It is much easier to take into account the effect of
sampling since it will be shown that this can be described by means of
linear difference equations. On the other hand, the quantizing effect is
much more difficult to account for, since it is deseribed by nonlinear
equations. All the theory in subsequent sections will deal with the linear
problem, on the assumption that the quantization of the variables is
made fine enough to produce negligible effect. Generally, the theoretical
objectives which apply to systems of the type shown in Fig. 1.3 are to
obtain the output sequence or continuous output in terms of the input
sequence and the system parameters.

1.4 The Sampled-data Feedback System

If the system configuration includes elements which feed the output
variable back to the input and if a sampling operation is included, the
system is referred to as a sampled-data feedback system. If the objective
of the system is to control one or more variables in the system so that
they have a desired functional relationship with the inputs and digtorb-
ances, the qualifying term control is included in the name.

A simple sampled-data feedback control system is shown in Fig. 1.4.
In this system the error signal is sampled and is reconstructed before
being applied to the continuous element. The latter may be the plunt
or process which is being controlled, including amplifiers, instruments, and
actuators. This error-sampled system can be compensated by the addi-
tion of networks in the continuous element, just as in the case of nrdinary
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continuous feedback systems. The problem of designing such network
iz considerably more complex, however, because of the presence of th
saropling operatiorn.

A configuration which is unig
which a digital controiler &
the controlier accepts o sequence nd processes them, uaus!
lincarly, to produce an sutput number sequence. The latter pequance |

i to sampled-data systems is

as shown in Uig. 1.5, Tn this sy

of nainbers &

x/\_,_____ Samciny // =
‘Continuous
error

+

Input

Data Continuous
reconstruction element

Fia. 1.4. Typical error-sampled feedback control system.

reconstructed into & continuous command signal and is applied to th
plant. If the inear program of the digital controller is properly designec
the over-all system can be stabilized and its dynamica! performanc
made to conform to fairly rigid specifications. The digital controlic

Data
Sampled reconstruction
errar Qutpi
g +(-\ . — {_._ e
nput \[/Continuous Frocessed i f
- errer Digital command ; |
gital N Continuous
| controlier sequence element
i -

Fra. 1.5. Sampled-data feedback conirol system using digital controller.

may be implemented by digital-computer techniques or it may emupla
a mixture of analogue and digital componentis. Its main requirenex
is that it be capable of receiving a sequence of numbers equaily spane
in time and of processing thern in real time into a conmunand signal. 1
will be shown later that controllers of this type ecan produce sysher
whose performance cannot be duplicated by all-continuous systems,

The problems which must be studied in sampled-data ferdback contis
systems include all those encountered in continuous systerns. Iirst,
criterion for stability must be derived and adapted for application t
physical problems. 8econd, a means for relating the input and oubpu
which is as direct and simple as the Laplace transform in continuou
systems must be developed, along with a meang for shapin; and comper
sating the system. A unique property of sarapled-data systems is the
the output will contain a small periedic output component which is th
result of intermittency in the signal within the systemr caused hy th
sampling operation. This periodic variation is knowr as vipple, an
methods for analyzing this compenent and reducing or contreiiug it
magnitude are required.
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There are many possible configurations possible in addition to those
shown in Figs. 1.4 and 1.5. Sampled signals may exist at several points
in ibe system as well as in the error line. There may be dynamical
elements in the feedback line, and there may be multiple loops. The
transform methods for sampled-data systems must be applicable to all
possible configurations.

1.5 The Z Transformation

Continuous linear dynamical systems are described mathematically
hy a set of linear differential equations. While their solution can be
carried out by classical methods, the use of the Laplace transformation
organizes and simplifies the process. What is even more important,
inversion of the transform of the variable of interest is rarely necessary
in order to deduce the important characteristies of the system and their
relation 4o the system constants. Mapping techniques on the complex
plane in the form of transfer loci or root loci further clarify the properties
of the system. Certainly, the value of the Laplace transform as a tool
for the analysis and synthesis of linear continuous systems is indisputable.

Linear sampled-data dynamical systems are shown to be deseribed
by a set of linear difference equations, provided that all the samplers
in the system are synchronous, that is, their sarapling periods are equal
or related by integers. Some of this earlier work, as reported by Olden-
bourg and Sartorius,*® was motivated by the use of intermittent error-
sensing devices such as the chopper-bar galvanometer, shown sche-
matically in Tig. 1.6. In this type of device, a small error voltage or
current is applied to the galvanometer coil, While the chopper bar is
raised, the sensitive galvanometer movement is free and the coil responds
with a large displacement in response to the weak signal. Periodically,
the chopper bar is lowered and the projecting galvanometer needle causes
a bell crank t6 be rotated more or less proportionately to the deflection
angle 6. The bell crank causes the output shaft to rotate with a torque
capacity determined by the chopper-bar drive rather than the galva-
nometer-coil drive.

The main point of interest here is that a datum is stored in the output
shaft just once per cycle of the chopper-bar drive. In a sense, the inter-
mittency of the output signal has been accepted in return for a high
sensitivity of the system. The early wo-k by Oldenbourg and Sartorius
generalized systems of this type into the form of the sampled-data block
diagrams of Figs. 1.4 and 1.5. It was shown that these systems could be
described by a set of linear difference equaticns whose soclution could be
obtained by classical methods. The linear sampled-data system was
therefore placed in the same status as the eontinumous system, using
clasgical methods to solve the differential equations.
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In the field of mathematics, Demoivre and Laplace®3* developed a
form of transform calculus which could be applied to the solution of
linear difference equations. This approach was adapted to the solution
of pulsed filters and sampled-data systems by Hurewicz,’® who laid much

Galvanometer
/
g Movement
3 - Chopper bar
4 </ Bell crank

F16. 1.6. Sketch of chopper-bar galvanometer.

Follower -~

of the basic groundwork for the transform method of analysis of sampled-
data systems. Subsequent investigations!»3447 further extended this
initial work. The result of these efforts was the development and
refinement of the so-called z transformation and its application to the
analysis and synthesis of sampled-data systems.

The z transformation is entirely analogous to the Laplace transforma-
tion and its application to continuous systems. It turns out that, for
systems having lumped constants, that is, those which are described by
linear difference equations with constant coefficients, the z transformation
gives expressions which are rational polynomial ratios in the variable z.
This variable is complex and is related to the complex frequency s used
in the Laplace transform by the relation z = ¢7%. In z-transform theory,
such concepts as the transfer function, mapping theorems, combinatorial
theorems, and inversion bear the same powerful relation to sampled-data
systems as does the Laplace transformation to continuous systems.

Without going into detail at this point, the general concept of the
z transformation as applied to systems is shown in Fig. 1.7. Here the
output number sequence of the system is related to the input number
sequence by a linear difference equation. If the sampled output is c*(t)
and the input is 7*(¢), and if the z transforms of these sequences are
C(z) and R(z), respectively, a pulse transfer function G(z) can be found
which relates them in the following manner:

Ck) = G(@)R() (1.2)
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The form and constants of the pulse transfer function G(2) are a property
of the system and can be found in terms of the system constants. These
relations will be rigorously derived in later chapters.

The relation expressed in (1.2) is dependent on the fact that the
input and output samples are taken with the same sampling instants.

R
\ \
\ ‘ N\
o >R | > low
Input Sampled Sampled
Input " finear output
system

Fia. 1.7. The pulse transfer function G(z).

It is possible to extend the concepts of the z transformation to include
the case where the output and input samples are taken at some integral
multiple of a basic sampling rate. For instance, if the basic rate is
taken as unity, the input and output sampling operations can take place
at two and three times the basic rate, respectively. Such systems are
referred to as multirate sampled-data systems, and suitable modifications
in z-transform theory can be made to cover these cases. A typical system
is shown in Fig. 1.8, where the input sampler operates with a sampling

l-—‘ Glza)
T T/n
P - Ri2) C(zn,4
Input Sampled Multi-rate
input Linear sampled
system output

Fia. 1.8. Multirate sampled-data system.

interval T, while the output sampler has a sampling interval T/n. The
pulse transfer function relating these sequences at input and output is the
multirate pulse t‘ra.nsfer function G(z,). If R(z) is the z transform of the
input sequence and C(z,) is the multirate z transform of the output, then
they are related as follows:
C(zn) = G(za)R(2)

Inversion of (1.3) will yield the multirate output sequence.

Sampled-data systems are often.subjected to inputs or disturbances
which are random. To handle this situation analytically, a number of
concepts and definitions analogous to those for continuous systems must
be devised. Such terms as auto- and cross-correlation function of sample
sequences, sampled power spectra, and cross spectra are used. Relations
which give the shaping effects of a linear sampled-data system can be

(1.3)
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found, just as in the case of continuous systems. Techniques are avail-
able to optimize the performance of sampled-dats systems based on
mean-square criteria used in the design of sampled-data feedback controi
gystems and filters,

1.6 Miscellaneous Uses of Sampiad-data Theory

If o linear syatom containsevariables which are astually sampled, analy-
sis by use of the z transformation is exact. Interestingly enough, the
sarae theory can be applied approximately to models of continuous sys-
tems in which sampling of the variable is introduced artificially as an
aid to analysis. For instance, with the continuous feedback control
system shown in Fig. 1.9q, it is often desired to obteain the response of the

. ‘\ y
1?1"+jr}E‘” s R I /@ S o
l N

T
Data
reconstruction
la) )

Fi1a. 1.9. (a) Continucus feedback system. (b) Sampled model of feedback system
for computation.

system to an input in the time domain using ordinary inversion of the
Laplace transform of the output variable. In principle, this is very
simple and straightforward, but if an accurate solution is desired, the
process can be quite laborious, requiring the use of calculating machines.

It so happens that one of the techniques for inversion ef the z transform
is directly accomplished by routine numerical processes. This advantage
can be applied to continuous systems by constructing a sampled model
which gives solutions with tolerable error. Such a model for feedback
systems often takes the form shown in Fig. 1.9b. By selecting the
sampiing rate high enough and using a sufficiently sophisticated data-
reconstruction element, acceptable accuracy can be achieved. As a
matter of comparison, the sampling interval is exactly analogous to the
quadrature interval which would be selected in the numerical integration
of a diffcrential equation. The sampled-data approach has the advan-
tage, however, that a physical interpretation of the process is readily
seen. Having selected the sampled model of the continuous system, its
analysis becomes one of numerical methods simply carried out by a desk
calculator or digital-computer program.

The use of a sampled model in this as well as other applications has
the advantage of making clear just where the sampler should be placed



