X T L N S o~ e, -

12“ . 7860939

Springer-Verlag

Programmers e

Heidelberg
Berlin

r

and Managers

The Routinization of
Computer Programming
in the United States

E7860939

Philip Kraft

Department of Sociology

State University of New York
at Binghamton

Binghamton, New York 13901

Library of Congress Cataloging in Publication Data
Kraft, Philip.
Programmers and managers.

(Heidelberg science library)

Bibliography: p.

Includes index.

1. Computer programmers— United States. 2. Elec-
tronic data processing departments—Personnel management.
3. Industrial relations. I. Title. II. Series.
HD8039.D37K7 331.7'61'0016420973 77-1667

All rights reserved.

No part of this book may be translated or reproduced in
any form without written permission from Springer- Verlag.

© 1977 by Springer-Verlag, New York Inc.
Printed in the United States of America.

987654321

ISBN 0-387-90248-1 Springer-Verlag New York
ISBN 3-540-90248-1 Springer-Verlag Berlin Heidelberg

SRR L . iy oo vk sk fabiaais. b gh s M S e e S el

Bl e AL en L o o s R

Heidelberg
Science
Library

- g

eI Philip Kraft

Library

\%

Veblen, Thorstein, 21n
Vonnegut, Kurt, 53n
Von Neumann, John, 24n

W

Ward, Tom, 15

Weber, Richard, 39n, 41

Weinberg, Gerald M., 13, 16ff, 67, 71

Western Electric, 33

Westinghouse, 33

““White collar’’ vs. ‘‘Blue collar,”’ 42

Women in software, 47, 106

World War II and development of computers, 34—35

Y

Yale University, 33
Yorktown Heights Research Facility (IBM), 35n

A Rt G5 24 KA
AR AT e {6.7

At ANF Lh 4 a8

e o Y

Index

homework of, 76—78
salaries, 88—92
social background of, 42, 47-49, 105-106
training of, 104—106
See also programmers and coders
Software workplace, 67-76
authority divisions in, 59-63
contrasted with industrial workplace, 78, 104—105
control of, 7, 20, 26, 29, 45
supervisory modes of, 74-75, 83-84

Specialization, 14—17, 27. See also division of labor and hierarchy

Sperry Rand, 35, 36

Standardization, 51-63. See also fragmentation and routinization

Stanford University, 48

Status, 17, 42n, 60-61

Stone, Katherine, 19

Stored program computer, 24-25, 37

*‘Structured programming,’’ 4, 9-10, 28, 56-59, 61, 64, 99
control structures, 108—110
managers perception and use of, 9—10, 108—109

*‘Super programmers,’’ 86

Supervisory work, dual nature of, 83—84

System Development Corporation (SDC), 27, 37-38. See also

RAND Corporation
Systems analyst, 14, 16, 18n, 38, 52, 72-76, 88—89

T

Taylorism, 20n. See also control
Technical career ladders, 87, 90. See also ‘‘dual ladders’
Technical institutes, 40—41. See also junior colleges
Technical rationality as ideology, 101. See also productivity
Technical supervision contrasted with management, 74—75
Technicians, 34
Technology, mystification of, 17n
Time sharing, 26ff
Toothill, G. C., 22n
Training, ideological component of, 41n

in house, 33, 35

standardization of, 37
Training institutions, overlaps with industry, 84—85

U

Unions, 45-49, 96

UNIVAC, 36

University of California at Los Angels (UCLA), 49n
*“Upgrading,”” 102

Foreword

Norbert Wiener, perhaps better than anyone else, understood
the intimate and delicate relationship between control and
communication: that messages intended as commands do not
necessarily differ from those intended simply as facts. Wiener
noted the paradox when the modern computer was hardly more
than a laboratory curiosity. Thirty years later, the same
paradox is at the heart of a severe identity crisis which con-
fronts computer programmers. Are they primarily members of
‘“management’’ acting as foremen, whose task it is to ensure
that orders emanating from executive suites are faithfully trans-
lated into comprehensible messages? Or are they perhaps sim-
ply engineers preoccupied with the technical difficulties of
relating ‘‘software’’ to ‘‘hardware’’ and vice versa? Are they
aware, furthermore, of the degree to which their work—
whether as manager or engineer—routinizes the work of others
and thereby helps shape the structure of social class relation-
ships?

I doubt that many of us who lived through the first heady
and frantic years of software development—at places like the
RAND and System Development Corporations—ever took
time to think about such questions. The science fiction-like
setting of mysterious machines, blinking lights, and torrents of
numbers served to awe outsiders who could only marvel at the
complexity of it all. We were insiders who constituted a secret
society into which only initiates were welcome.

So today I marvel at the boundless audacity of a rank out-
sider in writing a book like Programmers and Managers.

What can be said of this study?
To begin with Dr. Kraft has written a study of computer

vi

Foreword

programmers unlike any other study of computer program-
mers. I am simply overwhelmed at what he has managed to
learn about the profession, the workplace, and the spirit of
computer programming. To my knowledge, this is the first
study written from the perspective of programmers themselves.
There is, of course, an enormous literature in this area, charac-
teristically written from the perspective of either the hardware
(essentially an engineering perspective) or the process to be
automated (essentially a management perspective). When Dr.
Kraft observes that the limited material available about pro-
grammers is not concerned with trying to understand who and
what programmers are but rather with developing techniques to
control them, he is being accurate in a way which only a
genuine “‘insider’’ can appreciate. 1 suspect that countless
programmers, reading his account, will indeed experience
“‘the shock of recognizing something which had always been
there but hadn’t been thought about before.’’

But this is more than a study of computer programmers
written for members of the profession. In providing a clearly
stated brief history of the modern computer in terms which all
laypeople can readily comprehend, Dr. Kraft has provided an
important demystification service in a field which thrives on
obfuscation and inflated technical pretense. He has, in addi-
tion, provided important insights into the bureaucratic envi-
ronment within which nearly all programmers must work.
Even more significantly, he has also provided insights into the
relationships between routinization of work in contemporary
industrial society and developing social class relationships.

I'suspect this work will be somewhat controversial for many
years to come. In the first place, it is clearly not a routine piece
of work done in a conventional manner. Since it is not, many
professionals in both computer science and sociology may ex-
perience considerable difficulty in relating to it. Sociologists
who can understand the broader social implications of the
phenomena being discussed characteristically know very little
about the technology or the minutae of the environment in
which computer programmers work. And those who are famil-
iar with the environment either do not know or do not wish to
be told about some of the social realities involved.

Dr. Kraft has in a remarkable way fashioned a book which
fills the gaps in both fields.

May 1977 Robert Boguslaw
Department of Sociology
Washington University
St. Louis, Missouri

Acknowledgments

Because Programmers and Managers itself must be consid-
ered a preface to more and better conceived studies of technical
occupations and technical workers, I will limit myself here to
thanking those who offered help, criticism, and guidance. The
people who provided the best of these—programmers, mana-
gers, systems analysts, and others who make their living in the
software industry—cannot be acknowledged by name. More’s
the pity, since the debt is all the greater.

Fortunately, I am able to thank directly many people who
insisted on being useful, sometimes in spite of doubts or reser-
vations about what I was doing. They are, by accident of
alphabetical priority, Cathy Arnst, Robert Boguslaw, Laird
Cummings, Pat Dolaway, Daniel Freedman, James Gesch-
wender, Joan Greenbaum, David Gries, Nancy Hall, Mel
Leiman, David Noble, James O’Connor, Barry Truchil, and
Nancy Zimmet.

The American Sociological Association, through its Com-
mittee on Problems of the Discipline, was nice enough to give
money to several sociologists to explore issues raised by the
study of white collar workers. My colleagues in that undertak-
ing—Theodore Kaplan, John Low-Beer, Martin Op-
penheimer, Theodore Reed and Magali Sarfatti-Larson—asked
and answered questions, provided reassurance in times of
doubt, injected doubts at times of over-assurance, and gen-
erally acted like colleagues are supposed to act. I am most
grateful to them and to the ASA for allowing us to get together.

The Research Foundation of the State University of New
York funded a small preliminary study of programmers
through its faculty grants program. Their early support is grate-
fully acknowledged.

Philip Kraft
Binghamton, New York
January 1977

7860939

Contents

Introduction 1

Programmers, managers, and sociologists 1
Expanding the data base 5

How this study is organized 8

A note on software scientists 9

Computers and the people who make them work

Introduction 11

The division of labor in programming 13
Programmers as engineers 18

The computer and how it grew 22
Separation of user and programmer 26
References 29

The organization of formal training 31

The engineering heritage and its consequences 31
Adapting tradition 34

Programming and the academy 38

References 50

De-skilling and fragmentation 51

Introduction 51

The de-skiller de-skilled 52
Programming as mass production work 61
References 63

11

Contents

The programmer’s workplace: Part | the “shop” 64

Introduction 64
The social structure of the programming workplace 66
References 79

The programmer’s workplace: Part Il careers, pay,
and professionalism 80

Introduction 80

Careers for coders and low-level programmers 82
Careers for managers 83

Careers for technical specialists 86

Pay 87

Professionalism 93

References 96

The routinization of computer programming 97

Introduction 97

Management practice and the de-skilling of programmers 99
Predictions and other essays in prophesying 103

The future programmers and programming 106

Reference 107

Appendix 108

Index 111

Programmers,
managers, and
sociologists

Introduction

Introductions traditionally are places where authors make one
last heroic attempt to justify their work—and to cover their
tracks. It is, all things considered, a useful tradition and I too
would like to explain how and why this study of computer
programmers came to be written.

I live and work near Binghamton, New York. Because IBM
is here, because General Electric, Singer-Link, GAF, and doz-
ens of more modest enterprises are here, lots of computer
programmers are here too. In the normal course of things, I got
to know many of them as neighbors, students, and colleagues. _
From the start they struck me as marginal people. They did
not, for example, fit neatly into the stereotypes that are com-
monly applied, however unjustly, to engineering workers as a
whole. They did not look like engineers are supposed to look
(crew-cuts, narrow ties, penny loafers, etc.), nor were they
taciturn and awkward around nonprogrammers. They did not
appear to be particularly conservative, either politically or so-
cially. Many were women.

But if programmers could ‘‘pass’’ as nonengineers in a
nonengineering world, they were not exactly academics or
managers or salespeople either. In a word, they were different
in ways I couldn’t quite define and I got curious. Since my
major interests are in the area of work and occupations, a study
of computer specialists seemed a natural way of satisfying my
curiosity in an orderly and systematic manner.

So I began, in an orderly and systematic manner, to collect
information about programmers. I wanted to learn about their
history and the history of their field, their education, their
occupational backgrounds, distribution, and so on. Almost

Introduction

immediately I encountered one major problem: hardly any in-
formation about these things existed. What little material did
exist was of a very peculiar sort. It was obviously intended for
managers and personnel directors rather than for the world in
general. I don’t mean to suggest that there was some sort of
deliberate conspiracy involved. It seemed instead to be a pecu-
liar case of an exotic occupation whose obscurity was pene-
trated only by those in whose interest it was to do so, i.e.,
managers.

This made me all the more curious, particularly since com-
puter programmers are critical people whose role in data pro-
cessing is, to put it charitably, little appreciated. It was easy
enough to understand why sociologists and other social scien-
tists had, in effect, abandoned programmers to their obscurity.
Computers are still relatively new and largely mysterious. So-
cial scientists, even those who make regular use of the
hardware, too often are only dimly aware that the machines
which do the things they have come to take for granted have to
be told what to do by people. Furthermore, it saddens me to
say, sociologists cling with most of the rest of the population to
a stereotype of engineering and technical workers which ex-
tends to computer specialists as well. Engineers, goes the old
saw, are dull people. If they don’t actually wear brush-cuts and
white socks anymore, they remain social Neanderthals. They
are ‘‘thing-oriented’’ rather than ‘‘people-oriented.’”” They
have no interests other than their work, which is, in any case,
so esoteric as to be meaningless even to the specialists who do
it. And what is perhaps the unkindest cut of all, technical
workers are hypocritical political cretins who affect a
philosophy of rugged individualism even as they earn a major
portion of their incomes from government contracts. They are,
in short, nowhere as interesting (or romantic) as the autowork-
ers or the physicians or streetwalkers that social scientists
usually have preferred to study.

By contrast, management researchers have shown consider-
ably more interest. They have compiled an extensive—if, for
all intents and purposes, also an underground—literature on
computer programmers and other computer workers. More ac-
curately, they have compiled four distinct literatures. The first
is a version of the old Norman Vincent Peale/Dale Carnegie
brand of moral uplift. Managers are encouraged to develop
proper attitudes towards themselves and the programmers who
work under them. Their duty is to foster right-thinking, en-
thusiasm for the job, and loyalty to the company. This is the
sort of stuff that gets recited at management conventions and

Programmers, managers, and sociologists 3

then reprinted in house journals as inspirational material for up
and coming junior executives. Except for its anthropological
interest to students of managerial mythology, most of it can be
safely ignored.

The second kind has to do with what is usually called
psychological profiling. Employers commonly make use of
tests which they hope will provide them with clues to the
psychological makeup of potential employees. The tests them-
selves have a number of purposes. One is to predict how well
an individual is likely to perform certain kinds of job-related
tasks. Programmer aptitude tests are perhaps the best-known
examples. Others are concerned with fingering potential
‘‘troublemakers,’’ that is, anyone who might disagree with his
or her betters or is not likely to adopt pro-company attitudes. In
spite of their long history of use by industry, there is consider-
able disagreement about their accuracy and usefulness and
much management literature has been concerned with these
tests’ relative merits.

A third kind of management writing is of more immediate
interest. It consists of the information about programmers’
salaries, their distribution by job categories, by industry, and
so on. To the extent that this sort of information is accurate it
is, of course, very useful. Unfortunately, there is relatively
little of it—Datamation and Infosystems seem to be carrying
most of the burden alone—and it applies to something less
than the whole population of programmers.

The fourth and last major category is made up of the work
of highly experienced programmers who have spent consider-
able time analyzing the organization of the programming work-
place. These writings are fascinating for more than their tech-
nical content; the work of F. T. Baker, Harlan Mills, and
Gerald M. Weinberg, for example, is also important politi-
cally. This is a critical and often misunderstood point. The
social relations of the workplace are arrangements of people
which affect more than just efficiency and productivity. They
are also relations of power, of domination and subordination.
In the workplace, including the programming workplace, such
relations are most clearly expressed in the form of a hierarchy
(sometimes referred to as the ‘‘chain of command’’ or ‘‘career
ladder’’) and usually represented by formal organizational
charts. Mills, Baker, and Weinberg, to the extent they and
others like them explore the social relations between various
categories of programmers, between programmers and their
managers, among programming departments, between pro-
gramming departments and other departments in the organiza-

e ———— e

Introduction

tion, are all discussing questions having to do with who is in
charge of whom and what. They are, in other words, discuss-
ing profoundly political relationships.

Because most managers understand this, the most serious
and thoughtful work of management researchers (and their
academic counterparts in Schools of Management) focuses on
issues which are not technical in nature; they are concerned
primarily instead with ways of arranging people to make them
amenable to management influence. Discussions of such var-
ied concerns as ‘‘dual ladders’’ (career lines for technical
employees), ‘‘structured programming,’” ‘‘chief programmer
teams,”’ and *‘egoless’” programming (all ways of arranging
programmers in particular forms of hierarchy), job structuring,
and so on, whatever their technical content, are primarily dis-
cussions of how to manage, not necessarily of how to increase
efficiency.

Put another way, management literature on programmers
displays a general concern with developing techniques to get
the people managers manage to do what they are told, not
simply how to write better programs. It tends to concentrate on
ways of figuring out how to predict who can do what kinds of
programming jobs (‘‘personnel selection’’), how to get pro-
grammers to fit into the structure of the organization (*‘getting
on board’’ or, occasionally, ‘‘seeing the Big Picture’’), and,
all things being equal, to get as much work out of them as
possible (‘‘developing motivation’’ and ‘‘acquiring the right
attitude’’).

Finally, it must also be said that much of this management
literature is not very flattering to programmers. Some of it, in
fact, closely resembles the popular stereotypes of engineering
and other technical workers. The major difference is that while
such stereotypes have been used to justify social sneers or to
ignore programmers altogether, managers have used similar
stereotypes to create techniques to advance their own very
specific ends. Managers, for example, are quite happy to go
along with the popularly held notion that programmers are
“‘thing-oriented”’ rather than *‘people-oriented.”” A common
managerial position is that, left to themselves, programmers
““would design a system for the computer not for the user.’’
There are endless variations on this theme alone.

What all of this added up to, it seemed to me, was that the
limited material about programmers was not concerned with
trying to understand who and what programmers were; it was
concerned instead with developing techniques to control them.
Although managerial wisdom with respect to programmers
constituted the bulk of the available material about them,

Expanding the data base

Expanding the data
base

5

clearly I was also going to have to look elsewhere for less
self-serving information.

Partly to balance the obvious managerial orientation of most
writings on programmers and partly to gather information that
was not readily available, I undertook a series of interviews
with many different kinds of programmers—systems pro-
grammers, applications programmers, programmers who
worked for hardware companies, for software companies, for
universities, for hospitals, and for commercial and industrial
organizations. I also managed to talk with a very rare species,
the middle-aged-to-old programmer, and I also came across a
hitherto undiscovered one: the unemployed programmer. For
good measure, I talked with managers and with people gener-
ally referred to as systems analysts. I also talked with academic
people who are training (or trying to figure out how to train)
programmers in universities. Finally, where I could, I ob-
served programmers at work.

Whenever I reached some sort of conclusion, I wrote it up
and showed it to several of the programmers I had talked with
earlier for their comment and criticism. I did this for several
reasons. The most obvious was that I wanted to be sure of the
facts of a situation and to catch any glaring errors in reporting
what I had seen or heard. A second reason was largely a matter
of principle. I have never admired the ethics or methodology of
social scientists who act as ‘‘participant observers’’ and insert
themselves into a community to report on the ‘‘natives.”’ I
don’t approve because the temptation is almost always too
great to resist treating the ‘‘natives’’ as objects. If people are
good enough to let you bother them with questions and con-
stant hovering around, they have a right to learn what you’ve
learned and to know what you think of them.

But beyond issues of accuracy and principle, returning to
the people I had interviewed or observed produced some unan-
ticipated results. For one thing, many programmers who had
been the most thoughtful and the most helpful to me hadn’t
realized just how clearly they had analyzed their own work
experiences and personal histories. They had put together, a
piece at a time and scattered over one or two interview ses-
sions, a cogent picture of what it was like to be a programmer.
When I returned to them with a “‘story’’ constructed from their
own observations, there was invariably the shock of recogniz-
ing something which had always been there but hadn’t been
thought about before. Recognition prompted more thought,
more details, and new insight.

This was obviously a fruitful method for probing beneath

